George David Rose for the degree of Doctor of Philosophy in Biochemistry and Biophysics presented on 3, Des. 1\%7.5.

Title: Calculations Relating to the Structure of Biopolymers

Kensal E. Van Holde

A testable, biphasic model for protein folding is formulated. In this model, linearly short and medium range interactions dominate early folding, causing the chain to assume independently nucleated modules of persisting structure termed LINCs. In a later stage of folding, the LINCs fold relative to each other, and it is only at this time that the protein assumes its characteristic interior and exterior and its overall globular structure.

In the perspective of the model, a computational approach is outlined, requiring first a systematic examination of steric and energetic constraints that can be calculated with some confidence by accepted means. To this end, calculations were conducted to determine the sterically allowed conformation for:

1) a post-helical residue situated at the carboxy-terminal end of a backbone-only helix,
2) various side-chains of an intra-helical residue, and
3) the constraints imposed on lysyl and arginyl side-chains if some accounting is made for hydration of the respective cationic side-chain moieties.

It is found that substantial steric constraints are engendered in all three cases.

In a second part of this thesis, the secondary structure of nucleic acids is examined. The secondary structure of ribonucleic acids and the genes from which they are transcribed is likely to be a parameter in any recognition and control processes involving these molecules. It is theoretically possible to enumerate the set of all messages, M, consistent with the observed amino acid sequence of a given protein. In practice, this set is computationally too large, being on the order of Avogadro's number for even a small protein. A method is developed to select two distinguished members of M without explicit enumeration. These members are:

III - the potential message with maximal secondary structure, and $\quad \mathrm{m}$ - the potential message with minimal secondary structure. The distinguished members, m and \underline{m}, are extrema that bracket M. They are used to examine the properties of M relative to the degree of secondary structure forced upon the actual biological message and upon the structural gene from which it is transcribed. Although this study leads to some general conclusions about nucleic acid structure, the range between min and \underline{m} is too large to permit specific predictions except in a few singular cases where further information is already available. With the exception of these cases, it appears likely that the quest for structural determination will be confined to the laboratory until a larger library of nucleic acid sequence data can be accumulated.

Calculations Relating to the Structure of Biopolymers

by
George David Rose

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Commencement June 1976

Redacted for Privacy

Professor of Biochemistry and Biophysics in charge of major

Redacted for Privacy

Head of Department of Biochemistry and Biophysics
Redacted for Privacy
Dean of Graduate School

Date thesis is presented: 31 December 1975

Typed for G. Rose by G. Rose

Acknowledgement

Without the skilled midwifery of Ken Van Holde, this work would have been stillborn, while without the long-standing and patient support of Larry Hunter and the Oregon State University Computer Center, it would have starved to death at an early age. Nurtured on discussions with Robert R. Becker, as well as Ralph Quatrano, Ronald H. Winters, Ted Hopkins, and Rjay Murray, these ideas reached their maturity during exchanges with Don Wetlaufer.

Any work of mine will always bear the imprint of my teacher, Harry Goheen, who has long fostered the application of automata theory as a paradigm of cognition.

This thesis is dedicated to Harry and Molly Goheen.

1. Introduction 1
2. Tertiary Structure of Globular Proteins 4
2.1 Limitations affecting a post-helical residue 8
2.2 Limitations affecting an intra-helical residue 13
2.3 Limitations affecting adjacent intra-helical lysyl and arginyl residues. 18
2.4 Summary and conclusions 18
3. Secondary Structure of Ribonucleic Acids 21
3.1 Messenger-RNA. 22
3.2 Large Palindromes 26
4. Bibliography 50
5. Appendix I 53

LIST OF TABLES AND ILLUSTRATIONS

Figure Page
1 Allowed positions for the dipeptide gly-ala 9
2 Sterically allowed positions for the first post-helical residue adjoining the C-terminus of a backbone-only alpha-helix 11
3 Graphic representation of the Tinoco matrix 29
for the MS 2 coat protein cistron, an illus- trative test region from the cistron, and proteins in the test set
Table Page
1 (Gly) $4^{-X-(G l y)} 4$ in Helix 15
2 (Gly) $4^{\text {-LYS-ARG-(Gly) }} 4$ in Helix 17
3 Winnowing of the Codon Set 47

1. Introduction

This thesis divides naturally into two distinct parts, each relating to the structure of informational biopolymers. The first part is concerned with the conformation problem for globular proteins, that is, with the relationship between a protein's amino acid sequence and its three dimensional configuration. The second part is concerned with the secondary structure characteristics of messenger ribonucleic acids and the structural genes from which they are transcribed.

In both parts, proteins and nucleic acids, a cannonical set of molecular structures is already inherent in the definition of the problem, and, in each case, the set in question is too large to be computationally useful. For example, it would be helpful to compute the free energy of all reasonable configurations of a small protein and display the result in some representation of protein conformation space. The astronomical number of members in the cannonical set precludes such an approach by exhaustion, not only for the example, but for any interesting computation one cares to make.

In both cases, proteins and nucleic acids, it is presumed that the large cannonical sets each have a single member (or perhaps a small equivalence class of members) that is the biologically active
representative of that set. In the case of proteins, this member would be the native form of the protein molecule; in the case of messenger-RNA, it would be the actual biological message. In any case, it is this distinguished member that is being sought.

In lieu of a method that permits exhaustive inspection, alternative approaches must be invented. For the conformation problem, the alternative depends upon a new, testable model for protein folding which is presented at the beginning of the next chapter. Using the model, the conformation problem can be partitioned into the summation of several separable, smaller problems, each of which is computationally feasible. In effect, the model provides additional information that can be used to eliminate uninteresting subsets of the cannonical set.

No model springs readily to mind for the messenger-RNA problem, and a different approach was taken, requiring the selection of boundary elements from the cannonical set. These elements bracket the remaining members of the set, and they can be discovered without explicit enumeration. The selection and application of boundary elements, called characteristic extrema, is discussed in chapter three.

During the course of this work, many computer programs were defined and written. Some of these, such as the computer graphics routines, were of enough general interest to be included in the O.S.U. Computer Center library and will not be further discussed here. There remained, however, a large number of programs whose
interest is particular to this work. This latter category can,
in turn, be further divided into three libraries, known as:
a) PROTEINS - a library of programs used to manipulate protein sequence data and coordinates, and to compute and display molecular energies.
b) RNA - a library of programs used to manipulate nucleic acid sequence data, and to compute and display selected configurations satisfying the Tinoco stability criteria.
c) PLIB - a subroutine library containing support routines used in conjunction with other programs.

A synopsis of the major programs in all three 1ibraries is given in the appendix.

II. Tertiary Structure of Globular Proteins

The transition of a denatured protein into its native structure is defined to be a global folding process, whereas any linearly piecewise folding that occurs in a nascent chain is a local folding process. Convincing instances of local folding have been demonstrated in various contexts (1,2). In general, the folded end product is expected to be process dependent because conformational states adopted by partial chains will be deprived of any information that accrues with additional chain growth. That is, a nascent chain cannot forsee its future.

Cases are known, however, in which both local and global folding processes yield the same final structure (3,4). One conception of how qualitatively differing initial states converge to the same final structure rests on the assumption that this structure is necessarily synonymous with a global free energy minimum for the molecule (3). Another conception will also rationalize the directed emergence of a unique conformation from differing initial states. In particular, a biphasic model for folding is proposed here. In this model, linearly short and medium range interactions dominate early folding from any state, and order the polypeptide chain into independently nucleated, persistent modular units of structure. Following this early assembly, linearly long-range interactions are then responsible for the further ordering of modular entities into the full
three-dimensional configuration of the protein.
The general notion of a biphasic model is no longer novel inasmuch as elements thereof are to be found, either explicitly or implicitly, in several recent publications $(5,6)$, and the concept of nucleation events proposed by Levinthal is, of course, well known (7). The attempt here, however, has been to provide a highly specific model that both takes into account the body of experimental evidence and includes sufficient detail to allow a quantitative examination of its consequences.

In detail, it is proposed that the polypeptide chain, dominated by linearly short and medium range interactions, folds initially into Local Independently Nucleated Continuous segments (LINCs). The ordering of the chain into LINCs is promoted during any local folding that takes place in a nascent chain, and LINC formation is also favored in a global folding process because the chain will fold into LINCs before it can fold into anything else.

LINCs are structurally persistent, separable, modular entities that are precursors to their counterparts in a folded protein. LINCs are usually, if not invariably, bounded by peptide chain turns $(8,9)$ which are construed to be the conformationally permissive (10) hinges that allow an ensemble of LINCs to fold relative to each other.

In this model, a protein is comprised entirely of LINCs and interspersed hinges. Not until the occurrence of inter-LINCs folding does the protein take on its characteristic interior and exterior
or its overall globular structure. It is at this latter stage in the folding pathway that linearly long-range forces come into play and the LINCs are disposed into their native conformation.

The LINCs and hinges model is consistent with the observation that both local and global processes can yield the same final configuration. The model is also consistent with the success of recent empirical efforts (11) to predict secondary structure based only upon correlations between local amino acid sequences. In the present model, alpha helices and anti-parallel beta pleated sheet are considered as particular instances of LINCs.

Viewed from a perspective prompted by this mode1, the problem of structure formation can be divided into two parts: prediction of LINCs conformation and prediction of inter-LINCs conformation. Some of the factors limiting inter-LINCs folding in the case of myoglobin suggest that packing constraints and hydrophobic interactions place major restrictions on any possible solution set $(12,13)$.

Turning now to the question of LINC's conformation, a study by Gelin and Karplus (14) finds side-chain torsional angles in pancreatic trypsin inhibitor at or near their expected minima in the free amino acid. Such a result is consistent with the present model, for, within a LINC, short and medium range interactions direct the folding process for side-chains as well. Thus, when an independently nucleated oligopeptide 'jiggles' into a persisting conformational minimum, the side-chains are expected to
populate their respective minima too, because the steric constraints at this stage in the folding process are not comparable to those imposed on a side-chain at the interior of a protein. It might be thought that when the LINCs subsequently fold relative to each other, displacement of the side-chain from a rotational. minimum may find compensation in better inter-LINCs packing. In practice, this trade-off becomes less feasible because a sidechain displacement is no longer free to occur independently, but only in cooperation with other structural determinants in the LINC.

In the general case, the problem of predicting the conformation of only a single LINC by complete energy minimization (15) is still too complex to solve directly. In a recent attempt to reduce the computational complexity, each amino acid residue in the protein is represented by just two points (16). While this approximation is presented as being high1y successful, it is difficult to believe that the information loss arising from a point representation of the side-chain can yet be consistent with predictive results.

The approach adopted here is to compile a catalog of constraints limiting the conformational freedom of a LINC. The catalog can then be used to winnow conformation space to a 1imited set of energetically favorable conformations for a given LINC. In this manner, the computational complexity will be suitably reduced without concomitant loss of information.

The remainder of this paper describes computations that reflect the stringent limitations inherent in LINCs packing, based
primarily on steric restrictions.

2.1 Limitations affecting a post-helical residue

Upon termination of a right-handed alpha helix at its C-terminus, the first residue no longer in a helical orientation will be termed a post-helical residue. The subspace of conformation space that can be occupied by selected post-helical residues is now explored.

Figure 1 is a Ramachandran (phi,psi) plot with peptide coordinates taken from Marsh and Donohue (17). This (360 x 360) space was sampled every ten degrees and each ' x ' marks a sample point where the dipeptide gly-ala is found to be sterically allowed. The contact distance criteria used to compute steric inhibition were taken from Ramachandran and Sasisekharan (18). Superimposed upon the 'hard-sphere' contact map in Figure 1 are energy contours of a 'soft-sphere' function (19). The good agreement between hard sphere and soft sphere functions is no longer surprising to us, as repulsive forces are known to play a dominant role in such functions. To facilitate discussion, dipeptide space is partitioned and named as shown in Figure 1.

Inspection of Figure 1 shows a narrow energy well in the map area corresponding to right-handed alpha helix. For helical residues populating this region of the map, narrowing of the well ought to be further enhanced by hydrogen bonding within the helix.

Allowed positions for the dipeptide gly-ala. Positions found to be sterically allowed are indicated by an X. Some favorable energy contours are outlined, and the regions are named.

Figure 1

This expectation appears to be borne out for the refined x-ray structure of lysozyme $(15,20)$ by the apparent clustering of (ϕ, ψ) values in the neighborhood of $\phi=120, \psi=130$. This is the only high density cluster of points in the (ϕ, ψ) plot of lysozyme.

I first examine steric constraints resulting from backboneonly interactions between a post-helical residue at the carboxyl end of a right-handed alpha-helix and the four preceding residues; all five residues are backbone-only residues. A backbone-only residue is one without a side-chain; it can be viewed as a des-methyl L-alanyl residue. Steric constraints imposed on a backbone-only residue are the minimal constraints for any actual residue, regardless of the nature of the side-chain.

With one turn of backbone-only helix preceding a backboneonly post-helical residue, only the conformations shown in Figure 2(a) are allowed. This restriction of conformation space is due to steric interference between the backbone atoms in the post-helical residue and the adjacent carbonyl oxygen from the preceding turn of the helix. Since the restriction involves only backbone atoms, every post-helical residue is at least this restricted.

When the side-chain in a post-helical residue is also taken into consideration, further structural limitations are seen. While a post-helical backbone-only residue is not distinguishable in this analysis from a post-helical alanine, differences do begin to appear with further increases in side-chain size. Corresponding diagrams for the cases of histidine and tryptophan are shown in Figure 2 (b)

Sterically allowed positions for the first posthelical residue adjoining the C-terminus of a backboneonly α-helix.
(a) Allowed positions for a backbone-only residue. Backbone-only residues are allowed only in the area shaded by diagonal lines.
(b) Allowed positions for Trp and His.
(c) Allowed positions for Trp only.

Figure 2

Figure 2 (Continued)

and Figure 2(c). In this computation, side-chain configurations arising from the domain $\chi^{1}=60^{\circ}, 180^{\circ}, 300^{\circ}\left(\pm 10^{\circ}\right)$ and $\chi^{2}=0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, were examined. It can be seen from the figure that the side-chains can impose significant additional constraints on the possible disposition of a post-helical residue.

The structural limitations shown for post-helical residues are based on the assumption of energetically well-formed helix (21). When the helix used for these computations is appropriately distorted at a constraining locus, there is an accompanying relaxation of the observed constraints.

In addition, deviation from the ideal peptide geometry used here may tend to reduce the limitations shown in Figure 2. However, an attempt has been made to compensate for this possibility by a conservative choice of contact distance criteria. Studies on steric hindrance show a sensitive dependence upon the choice of contact distance criteria (17), with the Ramachandran values being the most conservative set proposed.

2.2 Limitations affecting an intra-helical residue

A second example of stringent packing constraints is seen in the case of an intra-helical residue. The helix-breaking tendency of proline due to steric effects was observed some time ago $(18,22)$. In this second example, attention is focused on the converse steric effect, limitation of side-chain freedom by the helical backbone.

Each of the amino acids listed in Table 1 was included as the middle residue between two turns of backbone helix (i.e. $(g l y)_{4}^{-X-(g l y)} 4$ where X is the residue under inspection). The side-chains were then examined at configurations where side-chain groups are in one of the conventionally observed torsional minima. Aliphatic groups were varied over the domain $60^{\circ}, 180^{\circ}$, and $300^{\circ}\left(\pm 10^{\circ}\right)$, while planar and aromatic groups were varied over the domain $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°. Table 1 summarizes the positions found to be sterically allowed. Backbone helix is seen to strongly limit the accessible side-chain structures of several amino acid residues.

In the formation of a LINC, charged polar residues are probably hydrated. The attachment of a hydration shell to the terminal group of arginine or lysine, for example, will increase the packing constraints. To approximate hydration effects, x-ray data from salts of arginine and lysine (23, 24, 25) were examined and water molecules were attached to the terminal groups at loci where hydrogen bonding was observed in the crystal structures. The water was oriented so that its hydrogen atoms were symmetrically positioned above and below the plane of the side-chain group. The hydrated amino acid residues, Lys $\cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ and $\operatorname{Arg} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right) 5$ were then used in the intra-helical computation. In Table 1 , it can be seen that the inclusion of hydration tends to force both arginyl and lysyl side-chains towards extended chain configurations.

Table 1

$$
(\mathrm{Gly})_{4}-\mathrm{X}-(\mathrm{Gly})_{4} \text { in Helix }
$$

Domain A position	$I=60^{\circ} \pm 10^{\circ}{ }^{\circ}$
	$I I=180^{\circ} \pm 10^{\circ}$
	III $=-60^{\circ} \pm 10^{\circ}$

Domain B position $\begin{aligned} & \text { I }=90^{\circ} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { IV }=90^{\circ}= \\ & \\ & \\ & \end{aligned}$
The domains given for each residue are the domains of definition over which each side-chain group was varied, listed in sequential order of increasing distance from the $C-a l p h a \operatorname{long}$ the side-chain. For example, Tyr has two degrees of rotational freedom in its side-chain arising at the $C^{\alpha}-C^{\beta}$ bond and at the $C^{\boldsymbol{\beta}}-C^{\gamma}$ bond. With two degrees of freedom, it is necessary to specify two domains of definition. These are listed in the table below as A, B where domain A pertains to the $C^{a}-C^{\beta}$ bond and domain B pertains to the $C^{\boldsymbol{P}}-\mathrm{C}^{\boldsymbol{\gamma}}$ bond.

Residue	Domain	Allowed Positions	Hydrated Form Allowed Positions
LYS	A, A, A, A	II, II, II, I-III II, I, II, I-III III, II, II, I-III III, III, II, I-III	II, II, II, II II, I, II, II III, II, II, II III, III, II, II
CYS	A	$\begin{aligned} & \text { II } \\ & \text { III } \end{aligned}$	
GLU	A, A, B	II, I, II or IV II, II, II or IV I, II, II or IV I, I, II or IV	
HIS	A, B	II, II or IV	
MET	A, A, A	II, I, I or II II, II, I-III III, II, I or II III, III, II or III	
ASP	A, B	II, II or IV	

Table 1 (continued)

Residue	Domain	Allowed Positions	Hydrated Form Allowed Positions
THR	A	III	
TYR	A, B	II, II or IV	
SER	A	II	
		III	
VAL	A	III, III	
ILU	A, A	III, II or III	
LEU	A, A	$\begin{aligned} & \text { II, II } \\ & \text { III, III } \end{aligned}$	
PHE	A, B	II, II or IV	,
TRP	A, B	II, II or IV	
ARG	A, A, A, B	II, II, II or III, I or II or IV	$\begin{gathered} \text { II, II, II or } I I I, \\ \text { I or } 1 I \end{gathered}$
		II, II, I, I or IV II, I, II, I or II or IV	II, I, II, I
		II, I, I, I or IV III, II, II, I or II	$\begin{aligned} & \text { II, I, I, I or IV } \\ & \text { III, II, II, I } \end{aligned}$
		III, II, I, I or IV	III, II, I, I or IV
		III, III, II, I or or II or IV	III, III, II, I
		III, III, III, I or II	$\begin{aligned} & \text { III, III, III, I } \\ & \text { or II } \end{aligned}$

Table 2

$$
\mathrm{GHy}_{4}{ }^{\text {-LYS-ARG- }(\mathrm{Gly})_{4}} \text { in Helix }
$$

Domains are defined as in Table 1. Any of the allowed positions listed for lysine are sterically compatible with any of the allowed positions listed for arginine. All other pairwise positional arrangements are sterically incompatible.

Allowed Positions
for Hydrated Lysine
II, II, II, II
II, I, II, II
III, III, II, II

Allowed Positions for Hydrated Arginine

II, II, II, I
II, II, III, I or II
II, I, II, I
II, I, I, I or IV III, III, II, I III, III, III, I or II

2.3 Limitations affecting adjacent intra-helical lysyl and arginyl residues

As a final experiment, sequentially adjacent lysyl and arginyl residues, both intra-helical, were inspected to see whether such a juxtaposition imposes constraints in addition to those experienced by these residues taken individually. Additional constraints were observed, as summarized in Table 2.

2.4 Summary and conclusions

The values obtained from the preceding computations were not compared to values available from x-ray studies since a correspondence between individual torsion angles will depend in part on factors not included here. These initial computations have employed an idealized moiety called backbone-only helix, and with it, the assumption of a completely regular geometry for a helix. While helical fibers of poly-L-alanine appear to be compatible with these assumptions (26), it is not expected that a heterogeneous collection of helical residues will exhibit equivalent regularity. For these reasons, it is felt an appropriate test of the model must wait until predicted LINCs can be compared to their x-ray elucidated counterparts in solved structures.

In closing this section, it should be noted that the LINCs and hinges model is the simplest representative taken from a spectrum of related models. In the preceding paragraphs, emphasis
has been placed on the similarity in structural identity of a LINC from the onset of structure formation through folding to incorporation in the final globular assembly. The model is simple in a computational sense, because, with these assumptions, the approximate structure of a given LINC can be calculated without regard for its neighbors and then treated as a single structural entity during subsequent computations. It is possible, however, that when the ensemble of LINCs is packed into a final globular assembly, a more extreme deformation of the original structures occurs. In the most extreme case, the original structure would be deformed beyond recognition, but for reasons given earlier, this extreme is thought to be unlikely. In the event that limited deformation takes place during inter-LINCs assembly, the initial conformation of the undeformed LINC would serve as a suitable starting structure.

In summary, a testable biphasic model for the folding of globular proteins has been proposed. In this model, linearly short and medium range interactions dominate early folding, causing the chain to assume independently nucleated, structurally persistent modular units of structure; these postulated entities are termed LINCs. In a later stage of folding, the LINCs fold relative to each other, forming a structure in which linearly long-range interactions also play a role. It is only at this time that the protein assumes its characteristic interior and exterior and its overall globular structure.

If these ideas about the folding process are valid, then demonstrable stabilizing forces must exist in oligopeptides of
even moderate size. One strong source of structural stabilization is steric repulsion, and, to this end, some packing constraints for intra-helical and post-helical residues have been shown. Additional work will be necessary to further develop the catalog of structural determinants for a LINC. At the same time, an exploration of the interfaces between LINCs and hinges will be required. In the transition from a LINC to a hinge, steric constraints can no longer take such a key role, since by these working assumptions hinges are comparatively flexible. In order to predict the locations of these interfaces, it will be necessary to have some further accounting of hydrogenbonding and hydrophobic interactions.

III. Secondary Structure of Ribonucleic Acids

The secondary structure of ribonucleic acids and the genes from which they are transcribed is likely to be a parameter in any recognition and control processes involving these molecules. For example, the half-life of mRNA varies widely in eukaryots, ranging from a few seconds to many hours (27). The notion that the secondary structure of RNA correlates with such half-life differences is consistent with the observation that rRNA and tRNA have both a high degree of secondary structure and a comparatively long half-life (28). The explanation for increased longevity as a function of increased secondary structure is probably related to the action of ribonuclease which will preferentially degrade single stranded RNA over double stranded RNA (29).

Evolutionary considerations are also of concern here. If there exists a structure:function correlation in ribonucleic acids, then particular configurations should enable or enhance biological function, and we may therefore expect selection pressures to play a role in the evolution of these molecules. Since there is no a priori reason to believe a mutation that confers benefit on the message will also benefit the protein, it is necessary to ask whether conflicts do occur, and, if so, how they are resolved.

Recent attention has been focused upon configurations of

[^0]
Abstract

sequences of genes. Such apparently diverse mechanisms as the Lac control region (30), the recognition sites for restriction enzyme action (31), and the DNA renaturation experiments of Wilson and Thomas (32) all implicate palindromic sequences in a seemingly central way. Palindromes fall naturally within the scope of interest of this study since an RNA sequence transcribed from a palindrome will energetically favor a hairpin secondary structure. Indeed, it seems likely that some of the helical regions in RNA are merely structural artifacts that are carried over from the DNA structure. Conversely, at least some palindromes must be forced in order to satisfy functional constraints imposed upon the RNA; the clover leaf structure of tRNA serves as a likely example.

3.1 Messenger RNA

To date a few mRNA's have been isolated, purified, and to some extent characterized. These include the message for silk fibroin, for wheat gluten, for the zymogen of cocoonase, and for a composite of the histones (33,34). While encouraging, this work has not yet been sufficient to prompt general conclusions.

One prospect for anticipating eventual experimental evidence is to make a statistical estimate of RNA secondary structure from a known amino acid sequence. This method may be coupled with deductions from available RNA sequence data. These techniques have been explored by White, Laux, and Dennis $(35,36)$ and by Mark and

Petruska (37). Another approach lies in the possibility of enumerating and characterizing the entire set of messages that could code for a single protein. If fortuitously this set of potential mRNA's all have some interesting property in common, it follows that the actual mRNA would also share this property. Unfortunately, the set of all messages, M, consistent with the amino acid sequence of even a small protein is computationally unwieldy, to say the least. In the case of ribonuclease, for example, M has 7.5 exp 22 members, almost on the order of Avogadro's number.

Without explicit enumeration, however, it is always possible to choose two distinguished members from the set M. These are:

1) m - the potential message that exhibits maximal secondary structure, and
2) m - the potential message that exhibits minimal secondary structure.

The algorithm for selecting m and \underline{m} requires either a permissive or a restrictive choice whenever an unspecified base is encountered.

The distinguished elements m and \underline{m} are characteristic extrema that bracket the set M. They are, in effect, a least upper bound and a greatest lower bound on the degree of secondary structure of any arbitrarily chosen member of M. As such, m and \underline{m} may provide a way to characterize M without resorting to explicit enumeration. For example, if m exhibits only a small degree of secondary structure, then it is clear that the actual biological message also has only a small degree of secondary structure. On the other hand, if \underline{m}
exhibits a high degree of secondary structure, then the actual message also has a high degree of secondary structure.

The existence of characteristic extrema for any set M is interesting to the degree that it provides a tool to test interesting hypotheses about the secondary structure of mRNA's. One such hypothesis is that, in the general case, long-lived message confers a selective advantage on a cellular system, for in this case less metabolic energy is required to maintain the message pool in a steady state condition. Such a hypothesis is promoted by the observation of very long-lived message in a situation where the correlative protein is required in great abundance (27). The mechanism of action of ribonuclease further suggests that long-lived mRNA will have a high degree of nuclease resistant secondary structure (29).

Many realistic considerations have been excluded from this hypothesis such as the effect of ribosome attachment on nuclease action or the use of scarce tRNA's as protective masking devices. These simplifications are appropriate as the first object of this exercise is to see what kind of insight the application of characteristic extrema can provide into problems of this type.

A prediction of the hypothesis is that proteins with greater evolutionary lattitude will have messages with proportionately higher secondary structure since a mutation that confers a structural advantage on the message may well alter the amino acid sequence of the protein. Hence, arranging a set of proteins in order
of increasing unit evolutionary period should arrange their respective messages in order of decreasing secondary structure.

To test this prediction, a set of sequenced proteins with differing unit evolutionary periods was chosen for examination. These included the histones f 2 b and f 2 al , human cytochrome c , and the alpha and beta chains of hemoglobin (38). In each case, the characteristic extrema were computed and inspected. The degree of secondary structure was measured using a method of Tinoco et al (39). The method consists of forming a matrix with diagonals that reflect all possible hydrogen bonded arrangements that can exist between bases. Thermodynamic criteria are then applied to assess the stability of each arrangement, and unstable loops are identified. While there is a minor disagreement about the thermodynamic criteria used to predict hairpin loops at the lower margin of stability in model systems, it is unlikely that computation of this threshold presents a problem in biological systems. In R17, MS II, and tRNA (38) the biologically significant configurations are more than stable; they are conspicuous.

The Tinoco matrix developed from a protein is going to be quite complex in appearance. If the protein has n amino acids, then the matrix has $(6 n-1)$ diagonals. In order to simplify this array, a program was developed to scan each diagonal in turn, remove any unstable structures, and extend stable folding trends to allow easier reading.

Examination of these data showed that the ml for all five
proteins could be entirely tied up in hairpin loops, while the 프 in each case was virtually devoid of loop structures. In retrospect, this result is hardly surprising since a loop alignment that avoids a 3:3 registration between the indeterminate third bases would stabilize loops for m and destabilize them for m. Hence, M is too large, and the range between m and m is too broad to distinguish between the messages for these five proteins in this fashion. As a correlary to this conclusion, it appears that the set M is sufficiently rich that evolutionary changes in the protein need not occur at the expense of structural constraints on the message.

3.2 Large Palindromes

The set of messages, M, coding for a given protein has been shown to be very large. Nevertheless, it is always possible to single-out two boundary messages that bracket this set with respect to the degree of secondary structure. These distinguished members, mim \underline{m}, trap all remaining elements of M between them. In the general case, though, the range between m and \underline{m} is too large to permit the existence of an effective forcing function on remaining members of M.

An article by Wilson and Thomas (32) reported the detection of very long palindromes in eukaryotic DNA. These palindromes are said to range from 300 to 6000 nucleotides in length, and experimental evidence indicates they are quite exact, with fewer than one
percent base pairing differences.
If a very long, almost perfect palindrome is transcribed, its transcript should exhibit a hairpin loop of corresponding length. The loop, in turn, will appear as a long trace down a diagonal of the Tinoco matrix on the message. While imperfect pairing may cause a small gap in the trace, or eyen a jog over to another nearby diagonal where the trace is continued, such irregularities will not be sufficient to obscure the overall pattern in the matrix.

The existence of an extended trace in the Tinoco matrix imposes a severe structural constraint on the message, for in this case the high percentage of overall secondary structure must be packed into a single hairpin loop. For any protein, P, of known sequence, we can develop m, the potential message in M that is most permissive of secondary structure, and this extremum can be examined for the existence of a long trace. If that trace is not apparent in m, then we may conclude it does not appear in any message in the set M, and it follows that the gene for P does not contain a large palindrome. A representative collection of proteins was examined, and in each case the fil for the protein was inspected for the existence of a long trace. A trace of suitable length was never found, and the tentative conclusion was reached that long palindromes do not reside in structural genes. Of course, the one configuration that cannot be excluded in an experiment of this sort is the possibility that a structural gene comprises half
or less of an even larger palindrome.
The test set of proteins included the alpha and beta chains of hemoglobin, the histones $f 2 a l$ and $f 2 b$, and human cytochrome c. From each, an mis was computed together with the Tinoco matrix on that $I I$. A computer program was written to pass a window of fixed size down every diagonal, advancing each frame one base pair at a time from upper right to lower left. Frames with complementary base pairing in excess of a specified threshold were marked. The window size and the percentage threshold were parameters to the program.

With a window of 35 base pairs and a pairing threshold in excess of 98%, no subtrace was found in the entire matrix of any protein in the test set. Relaxing these criteria to 85% pairing in a window of 25 base pairs, the trace patterns shown graphically in figure 3 were observed. These criteria are considered highly relaxed in view of the experimental evidence cited. A window size of at least an order of magnitude larger than the one used, as well as a pairing threshold in excess of 99% is indicated in the experimental studies.

The use of highly relaxed detection criteria coupled with the use of m, which is really an upper bound on possible pairing, assure that no palindrome, as characterized by Wilson and Thomas, escaped notice by falling just below the margin of detection.

As a control for the above experiment, the MS2 coat protein cistron was subjected to the same treatment as the min a protein

Figure 3
The graphs represent the Tinoco matrix of the MS2 coat protein cistron, an illustrative test region from the cistron, and proteins in the test set. Each diagonal was scanned by a program to find continuous regions with more than some specified threshold of pairing. The ratio shown in each figure is the pairing threshold over the window size in base pairs. Diagonal lines mark anti-parallel helical regions where these criteria were satisfied. The vertical scale is graduated in base pairs, while the horizontal scale is a nominal one; both scales divide the message into ten equal regions.

A diagonal line in one of the figures can be translated into the more typical hairpin diagram by using the axes to locate that diagonal within the matrix. The particulars of the pairing pattern can then be discovered by referring to a detailed printout of the Tinoco matrix. For example, the diagonal in the MS2 cistron test region that pairs bases 54,3,2,... with bases $2,3,4, \ldots$ respectively is diagonal 55 . In printout form, that diagonal appears as follows:

Diagonal 55.

base	5555554444444444333333333322
number	5432109876543210987654321098
base	GCCUCAAGCAUCGCUUUUAACCUUAUCA
score	22 2112211 111 122111
base	UGGCGUUCGUACUUAAAUAUGGAAUUAA
base	1234567890123456789012345678
number	1111111111222222222

Figure 3(continued)

In the more familiar pictorial format, the helical region appears as:

MS2 TEST [ISTRON 12, 18 3(c)

Axes are graduated in bases $\times 10$

Axes are graduated in bases x 10

DETAIHAI DS $\square \square 3(k)$

from the test set, with the computer held at constant conditions of temperature and pressure. Here the expected hairpin loop size is nine to twelve base pairs, and, in consequence, window sizes of sixteen to eighteen were chosen. This choice stands in sharp contrast to the previous computation in which the window size used was only one tenth of the expected loop size. At the thresholds shown, the trace patterns in figure 3 emerge; the base-paired 'petals'are readily apparent.

In passing, a technique was devised to winnow the set M to some proper subset M^{\prime} by taking advantage of evolutionary data. In the case of cytochrome c, for example, sequence data for 34 species, from neurospora to human, are available (38). At a given amino acid position in the protein, there are in general only a small number of residues that occur; this number ranges between one and nine for the 34 species used. The assumption was made that amino acid substitutions in cytochrome c are the result of a single point mutation. Following this assumption, a program was written to examine all possible permutations of the amino acids at any position, and to discard all arrangements in which adjacent amino acids differed by more than one base in their respective codons.

After discarding all arrangements failing the assumption, three cases were found:

1) no arrangements remained - this could happen if an evolutionary precursor was not included in the 34 species.
2) multiple arrangements remained - in this case,
phylogenetic considerations were applied to choose a likely arrangement.
3) a unique arrangement remained - in this case, phylogenetic considerations were still needed to validate likelihood.

In cases two and three, there were instances where a unique evolutionary path was discovered that was both consistent with the assumption and seemed to make phylogenetic sense.

The codons for each amino acid along the discovered path were then examined, and it was often possible to eliminate codons that would have contradicted the assumption. Following this strategy, one can finally end up with a proper subset of codons for the amino acid used in human cytochrome c, and by applying the algorithm at every position, a winnowing of the whole set M is achieved. The process is shown schematically in Table 3.

Clearly, the reliability of this method depends upon a knowledge of the true evolutionary path taken. To this extent, the final result represents only an informed guess.

Substitution of the winnowed set, M^{\prime}, for the whole set M does modify the extrema m and \underline{m}. In practical terms, though, the use of modified extrema in the experiments previously described did not change or enhance their outcome. This is not to say, however, that other experiments will not be rendered possible by the use of this technique.

In summary, the method of characteristic extrema was used to examine the genes of a representative set of proteins for the

Table 3.
Winnowing of the Codon Set

At amino acid position 13 in cytochrome c, only two amino acids are used: lysine in mammals, other vertebrates, and in higher plants; and arginine in lower plants and insects. If LYS was substituted for ARG by a single point mutation, then the first four codons in the left hand column become logically impossible.

Multiple Paths

At amino acid position 39 , three amino acids are used: lysine in mammals, other vertebrates, and insects; glutamine in higher plants; and histidine in two of the lower plants. Two arrangements are possible, each satisfying the assumption of a single point mutation.

Table 3 (continued)

1) $\underline{\text { LYS }} \longrightarrow \underline{\text { GLN }} \longrightarrow \underline{\mathrm{HIS}}$

0	AAA	CAA	CAU
ह月	AAG	CAG	CAC
0			

2) $\underline{\mathrm{HIS}} \longrightarrow \underline{\text { GLN }} \longrightarrow \underline{\text { LYS }}$

0	CAU	CAA	AAA
0	CAC	CAG	AAG

Arrangement two is the preferred one based on phylogenetic criteria.
existence of very large palindromes. The non-existence of such palindromes in the set under test prompts a conclusion that long palindromic configurations do not occur in structural genes. The possibility that a structural gene participates as a fractional part of an even larger palindrome could not be excluded by the method used.

References

1. Brown, J. E. and Klee, W. A. (1971) Biochemistry 10, 470-6.
2. Villarejo, M.R. and Zabin, I. (1973) Nature New Biol. 242,50-2.
3. Anfinsen, C.B. (1973) Science 181, 223-30.
4. Saxena, V.P. and Wetlaufer, D.B. (1970) Biochemistry 9,5015-23.
5. Baldwin, R.L. (1975) Ann. Rev. of Biochemistry 44, 453-475.
6. Ptitsyn, O.B., Lim, V.I., and Finkelstein, A.V. (1272)

Federation of European Biochemical Societies 25, 421-431.
7. Levinthal, C. (1968) J. Chim. Phys. 65, 44-45.
8. Kuntz, I.D. (1972) J. Am. Chem. Soc. 94, 4002-12.
9. Lewis, P.N., Momany, F.A., Scheraga, H.A. (1971) Proc. Nat. Acad. Sci., U.S.A. 65, 2293-97.
10. Wetlaufer, D.B. and Ristow, S. (1973) Ann. Rey. of Biochemistry 42, 135-158.
11. Schulz, G.E., Barry, C.D., Friedman, J., Chou, P.Y.,

Fasman, G.D., Finkelstein, A.V., Lim, V.I., Ptitsyn, O.B., Kabat, E.A., Wu, T.T., Levitt, M., Robson, B., and Nagano, K. (1974) Nature 250, 140-42.
12. Ptitsyn, O.B. (1975) Biophys. Chem. 3, 1.
13. Lim, V.I. (1974) J. Mol. Biol. 88, 857-894.
14. Gelin, B.R. and Karplus, M. (1975) Proc. Nat. Acad. Sci., U.S.A. 72, 2002-2006.
15. Warme, P.K. and Scheraga, H.A. (1974) Biochemistry 13, 757-82.
16. Levitt, M. and Warshel, A. (1975) Nature 253, 694-98.
17. Marsh, R.E. and Donohue, J. (1967) Adv. Prot. Chem. 22, 235-56.
18. Ramachandran, G.N. and Sasisekharan, V. (1968) Adv. Prot. Chem. 23, 326-438.
19. Brant, D.A. and Flory, P.J. (1965) J. Am. Chem. Soc. 87, 2791-2800.
20. Levitt, M. (1974) J. Mol. Biol. 82, 393-420.
21. Ramachandran, G.N. (1972) Conformation of Biological Molecules and Polymers; The Jerusalem Symposium on Quantum Chemistry and Biochemistry 5, 1.
22. Szent-Gyorgyi, A.G. and Cohen, C. (1957) Science 126, 697.
23. Karle, I.L. and Karle, J. (1964) Acta. Cryst. 17, 835-41.
24. Wright, D.A. and Marsh, R.E. (1962) Acta. Cryst. 15, 54-64.
25. Ramachandran, G.N., Mazumdan, S.K., Venkatesan, K., and Lakshminarayanan, A.V. (1966) J. Mol. Biol. 15, 232-42.
26. Arnott, S. and Dover, S.D. (1967) J. Mol. Biol. 30, 209-12.
27. Kafatos, F.C. (1972) Proceedings of the Vth Karolinska Symposium, Appendix C.
28. Brawerman, G. (1974) Ann. Rev. of Biochemistry 43, 621-42.
29. Hirs, C.H.W., Moore, S., Stein,W.H(1952) J. Biol. Chem. 200, 493-506.
30. Gilbert, W., Maize1s, N., and Maxam, A. (1973) Cold Spring Harbor Symposium 38.
31. Nathans, D. and Smith, H.O. (1975) Ann. Rev. of Biochemistry 44, 273-293.
32. Wilson, D.A. and Thomas, C.A., Jr. (1974) J. Mol. Biol. 84, 115-144.
33. Robbins, E., Borun, T.W. (1967) Proc. Nat. Acad. Sci., USA 57, 409.
34. Gilmour, R.S., Dixon, G.H. (1972) J. Biol. Chem. 247, 4621.
35. White, H.B., Laux, B.E. and Dennis, D. (1972) Science 175, 1264-1266.
36. Laux, B., Dennis, D., and White, H.B. (1973) Biochemical and Biophysical Research Communications 54, 894-898.
37. Mark, A.J., Petruska, J.A. (1972) J. Mo1. Biol. 72, 609-17.
38. Dayhoff, M.O. (1972) Atlas of Protein Sequence and Structure Volume 5, National Biomedical Research Foundation, Wash. D.C.
39. Tinoco, I., Jr., Uhlenbeck, O.C. and Levine, M.D. (1971) Nature 230, 362-367.
40. Brezinski, D.P. (1975) Nature 253, 128-130.

APPENTIX

proteins limpary

```
            PRIGRAM AALIST
```



```
C
C DROGRAM TO LIST TME AMINT ACIO SENUENCE
C EROM A PRUIEIN
c. PARANETERS ARE THE PRIITEIN FILE NAME ANI)
c. the NUMgER DF ThreE LFTTFR CJJES PER LINE
C. TUTPUT DIRECTED TU LUN 1?
```



```
C
    PROGRAM ADUHV?
```



```
C PROGRAM TU READ A CRYSTALLOGRADHIC STKIICTURE ANI)
C AUGMFNT IT RY AOIING H ATGMS TOTHE MAIN CHAIN ANIITO
C THE SIDE CHAINS IF THF FOLLOWIMG HESIUUES
c SFR,THK,TYHOLYS,ARG
C OUTP|T TOLUW 12
C TUTPIT TOLUNIE
c. wJRas with file lif c.mmROTNATES*10.
C
```



```
    PROGPAM RENDEK
```



```
C r
C DROGPAM TO COMPUTE SUCCESSIVE OIHFDRAL ANJ HEND ANFLFS R.
C FOR THE PYRON RENUER
C TVPHT IS THE ATIMIC COQRTINATES FIIR A PHOIEIN
```

```
C. n|TPIT TO LUN 1?, WHICH IS
    O
    FOUIPPED AS A FILE IF NOT ALREADY EOUIHPED O
C RFWOUNO IF A FILE C
C
```



```
    PROGFAAA CONMAP
```



```
C
C. DROGRAM TO PRINT J!H THF IOA CONTACT MAP C
C EROM THE CCMPGINATES FOR A PRIITEIN r.
C
```


PRUGRAM DIHEDRAL

C
C DROGPAM TU PRINT UUT THE PHI•PSYOANO CHI UIHEURAL ANGIFSS C
C EOR A PROTEJV WITH KNONN COMRIINATES C,
C. e,
C. THTPIIT LIRECTED TU LHM I? C.
C. רJTPIIT CONSISTS OF COMROTNATE TATA C.
C THEN A FTLE MARK e.
C. THEN OIHEORAL ANGLES C.
r. EOLLDWED HY A SECONO FILF MARK C
C.

PROGKAM EPATH

C ORDGRAM TU FIND AN EVOLUTTINAYY PATH THROUGH AN AIINTACI: \quad :
C SEQIJFNCF.

SHARGUTINE ALLPATHS(N, JAA, JNUM.JPATHS)

C
c SIJBRUUTINE TO FIN: ALL pIGSIALE EVDLUTIONARY fATHS WITHe
C TISTANCE 1 THRUUGA N AMIMO ACIDS e.
C EACH PDSSIRLE PATN IS CHARACTEZIZED RY ITO C.
C DERMIITATIGA. NUMRER. r
C רUTPIIT IS RETIRNFJ IN JPATHS. JT CUNSISTS DF JNIM DERMUTATIIN
r. vumafrs. une fir every lfgal path.

```
C
```



```
    PRIIGRAM NEXTRFS
```



```
C r
C DROIRAM NEXT KESIIUF.
c. PROGRAM TU START FRUM THF N-TERMINAL END UF A PROTEIN O
C ANO STOPPING AT CHOSFN SPTTS, TU AOD A RESIUUEES
C r
C IVPUT rUIHDINATES SHGIILD AE IN ANGSTPIIMS*IO O
C r
r. SINCF WIRKATMM COUROINATFS GET SUPERIMPOSED INN THE GOIIRO ARRAY C
C IT IS NECESSAKY TJ WIRRK FROM THE C. TFGMINAL ENO GACK O
C. TO THE N=TERMINAL ENO WHFV MAKING PIJTENTIAL MAPS C
C
```

```
            PPIGGAMM PIISPI.AY
```



```
C OROGRAM TO DISPLAY A POLYPEPTINE Rr.
```



```
C WHIJLE HACKBONF SELFCTTVELY DISPLAYED
    SIDE GROUPS SELECTTVEL.Y OISPLAYED
            INQIVIUUAL ACTO TYPES MAY HE SELECTIVELY OISPLAYET C
            DARTICIULAR RANGES MAY RF SELECTIVFLY OISPIAYEO O
            H=HARO COPY
            SP-ROTATE THE HICTIJPE
                    R-RESET
        NEL-EXIT
c. フ-ZOUM
```



```
            SIIRROUTINE LAHEL(JIOJPTT,KIJPY)
```


C C
C S:JGROUTINE TO LAREL THE ALPHA CARMGNS. C
C PARAMETERS ARE- C
C JJ ALPHA CARAIJN SFOUENCE NUMAER \&
C. JRITTO O LF LEFT FTGIJRF, 4 IF RIGHT FIGURE O.
C r.
C LABEL DESTHOYS THE CIARENT SCALIN, ANII RUTATIUN C.

```
r. r
```



```
            PROGKAM PLANECK
```

```
            PROGKAM PLANECK
```



```
C.
```

C.
C. PROGRAM TU CHECK THE RACKRONE PLANARITY OF A POLYPEPTITE CHATN. P.
C. PROGRAM TU CHECK THE RACKRONE PLANARITY OF A POLYPEPTITE CHATN. P.
r. TAKES THE PLAINES CO=N=H ANO
r. TAKES THE PLAINES CO=N=H ANO
r. CA-C O r

```
r. CA-C O r
```



```
C. BETWFEN THE INO NIJRMALS.
```

C. BETWFEN THE INO NIJRMALS.
C OTWFVTHETWNNRMALS
C OTWFVTHETWNNRMALS
c. ALL MUTPUT IS OIRECTEO TO LUV I2 whICH IS EGUIPPFOG TO RE A FTLE P
c. ALL MUTPUT IS OIRECTEO TO LUV I2 whICH IS EGUIPPFOG TO RE A FTLE P
C. INLESS OTHERWISE EQUTPOFO r.
C. INLESS OTHERWISE EQUTPOFO r.
r. r

```
r. r
```



```
    PROGRAM POLYMFR
```



```
C r
C OROGRAM TO PGUDUCE A DOLYMER WITH SPEGIFIED C.
c. ORIMARY SIRUCTURE
r. ALL TORSIIIN ANGLFS IN BACKRONE ARE IRO
c. NILL SIDE CHAIN AVGLES ARE O
c. TNPUT FKIMM A NAMEIJ FTIE
C n|TPUT TOLUN I?
c
```



```
            PROGRAM SHUFFLE
```



```
C
C PRIIGRAM TIG CANGE THE ORDFR OF A FILE UF ATIMIC GMIROINATES C
C FROIM THE ORDER NOH,CA,HA,CB.....C,II C.
C. TO THE ORDER CA,N,H,C,O,HA,C,R,... &
C. C
c. INPITT FROM A NAMED FILE r.
c. רUTP!TT TO LUW 12
c
```



```
    PQOGRAM SYNTHFSITE
```



```
C
C. SYNTHESITE A HACKYINF THAY IS NUMRES LONG.
C. ZEAOS NUMHES (PHI,PSY) ANGLES FRUM A FILE ANI)
r. TNISTS THE RACKAINE ACCORDJNA TO THE INTONELL TRANSFOWM
r. TF THOSF SPECIFIFO ANTILES
C. DRO AND GLY AKF NUT TRANSFORMED. HOWEVER. I,
C
```



```
    SIIRROUTINE INTOWELL(A1.A2.A3.A4)
```



```
C
C. &JRMIUTINE TO COMPUTE THE DIHEDRAL ANGLES JF AN FNFQGY WELL C
C. THAT IS CLOSEST TO THF RAMACHANORAN DISITIGIN SPECIEIFA
C. aY A OTHEORAL ANGLE PAIR (AL.AZ)
C A1.AZ ARE THE ACTUAL (PHI.PSY) ANGLES
C. A3.A4 ARE UIHETDRAL ANGLES OF THE CLOSEST NELL
r. ALL ANGLES ARE IN DEGREES
C
```



```
    PROGRAM TRUER
```

```
    PROGRAM TRUER
```



```
C
```

C
DROGRAM TU CDMPUTE A RASF PLANF AND MARK SELFCTEN
DROGRAM TU CDMPUTE A RASF PLANF AND MARK SELFCTEN
RESINUES FOR MTUINNG*IJPN A RENDER MONEI.
RESINUES FOR MTUINNG*IJPN A RENDER MONEI.
INPUT GONSISTS OF
INPUT GONSISTS OF
1) ATOMIC COURDINATES FOR THE PRUTETN
1) ATOMIC COURDINATES FOR THE PRUTETN
2) A FILE OF RESIDUES OF INTFREST. THF FIRST THREE IF
2) A FILE OF RESIDUES OF INTFREST. THF FIRST THREE IF
THESE RESIDUES ARF TAKEN TO DEFINE THE ZERO OLANE
THESE RESIDUES ARF TAKEN TO DEFINE THE ZERO OLANE
FILE SHOULD CIINIATN IINF RESIDUE PER RECORU
FILE SHOULD CIINIATN IINF RESIDUE PER RECORU
KEY RESIDUES 1 ANO ? ARE LINEO UP ALONG THE \& XOAXIS
KEY RESIDUES 1 ANO ? ARE LINEO UP ALONG THE \& XOAXIS
IN THIS ORIENTATIIN. THE PROGHAM ASKS WHETHER KEY PESTDUE
IN THIS ORIENTATIIN. THE PROGHAM ASKS WHETHER KEY PESTDUE
2 HAS POSITIVE OR NEGATIVE Y COORIINATE CIN THE XY PLANE
2 HAS POSITIVE OR NEGATIVE Y COORIINATE CIN THE XY PLANE
THIS INFORMATION IS USED TO RIITATE THE COJRHIINATES
THIS INFORMATION IS USED TO RIITATE THE COJRHIINATES
TNTO STANDARO ORIENTATION
TNTO STANDARO ORIENTATION
GUTPIIT CONSISTS IFF CONROINATES IJF THF RENCH MARK RESIOIJES
GUTPIIT CONSISTS IFF CONROINATES IJF THF RENCH MARK RESIOIJES
TOGETHEK WITH A SCALEN PLOT OF THEIR (X,Y) POSITIOVS

```
    TOGETHEK WITH A SCALEN PLOT OF THEIR (X,Y) POSITIOVS
```

C


```
    PE(IGRAM UNHENT)
```



```
C
    DROGFAM TU COMPUTE A SET OF CINSTSTENT C ALHHA CIMZDIAATES
    EROM THE DIHEURAL AND BFND ANGLES
    INPIJT IS A FILF RIINSISTING TF PECUROS, EAGH CUNTAIVIMA,
    \IHE\capKAI. ANGLF....JEND ANGLE...EA(I)-PA(I+I) LEVGTH
        OUTP!IT IO L.UN 12, wilCH IS
        EOUIFPED AS A FILE IF NOT ALbEADY ERUIPPEI
        RFWחIJNI) IF A FILE
C
```



```
            PROGFAM OLIGIPEP
```



```
C
C PROGRAM TO COMPUTE OLIGOPEPTIDE ENERGIES
    IVPUT CINSISTS IF
    1) SIIME FILES UF (PHI,DSY) PAIRS WHICH CIMPRISE THE OIMAINS 
        FMR THF RACKRINE ANGLES SETS
    2) SIMME FILES IIF SIDE CHAIN AVGLES THAT CIIPRISE THE C
        DONATNS IIF SIDE CHAIV ANGLE SETS
    3) A FILE THAT MAPS EACH RESTOIIE IVIN INNE ANU UNLY DNF
        OF THE DOMAIN SETS. CONSISTS OF A TUMAI IS vUMREN
        PER RECORD AND ASSUMEN TO AE IN RESIDUE DKIIER
    4) A FILE THAT MAPS EACH SIDECHAINS RTINDS INIOITS クIMAIN
        OF DEFINITIUN. THE FILE HAS INE RECJRD FOR EACH RFSITUE
        EVFRY SUCH RECTHD HAS K ITEMSO ONE FOR EACH RIITATARIF
        GOND IN THE SIDE C.HATN TF THAT RESTGHE
    5) A FILE OF CUIIROINATES FOR THE ILIGOPEPTIOE AS IT
        EXISTS IN TJTALLY UNFILIFO CINFIRMATION.I.E.
        WITH BACKHONE ANIGLES=IBO ANO SIDECHAIN ANGLES=0
C C O.jTPUT COVSISTS OF
r. 1) A FILE NAMEU WHY JF ALIMWED CONFIGIHRATIJNS
C 2) A FILE NAMEU WHYNOT TF CONTACT INHTMITEU CUNFIGURATIONS ©.
C
```


corecococococococosecocococococrocococococococococecococococ

RNA LIGRARY

```
    PPIIGRAM AATTAIIT:
```



```
%. C
c. PROGRAM TO REAO A FILF OF AMINU ACINS ANU TRANSLATF. C
C THEM TO AUGONS C
C OITPOT TO LUN 1? C
c. INPUT HAS IINE AMINO ACIO PER RECORO-3 LETTER CITESS C
C DUTPUT HAS IIP TO 2 AUGINS PER RECMRN C
C. C,
```



```
    PROGRAM EPATH
```



```
C e
C PROGRAM TO FINO THF EVILIITIONARY DATHS THRDUGH C
C A SERIES OF AMINN ACIDS. C
c. INPUT IS AN AMINO AGIN SEOUENCE WTTH EVOLITIUNAPY C
C ALTERNATIVES. EACH RECOROS IS IF THF FGRM C
    ITH AA AAI,AAV,...AASJ r.
    #ITTPUT IS A SERIES DF AUGOVS WHERE EACH KECORN IS C
    OF THE FORM C
    ITH AA AllGI.AlIG? C
C C
```



```
    PROGRAM FOLDRNA
```



```
C r,
C PPOGRAM TO INSPECT AN AUGTN CHAIN, IDENTIFYY C
```

```
C THE AUGIINS (UNIONS OF CONONS) THAT CODE FIIR EACH. C
C AND FORM A TINOCO MATRIX FOR THE SECUNUAKY STRUCTHOF. C
C. C
```


SHhROUTINE SIMPLIfy

c
C SURRUUTINE TO SIMPLIFY THE TINIJCOMATRIX ON LIIV 44 C C
C JUTPUT NEW SIMPLJFIEN MATRIX IN LIIN 48
C. STMPI.IFICATION OPCIJRRS BY
c. 1) ELIMINATING ALL SINGI_FTUNS C C
—
C. \quad C

SHBRDUTINE SCREEN

r
$\begin{array}{lllll}\text { C. SUGRIJTINE TO TRACF THROUGH ALL THE DIAGUNALS UF A } & \text { C } \\ \text { C. STMPI.IFIEO TINUCO MATRIX IN OROER TO ELIMINATF THOSF. }\end{array}$
C DTAGONALS THAT FALI QFLOW SMME DESIGNATEU THRESHDL, C
c. VALUF

C THE MATRIX SHIULU AE A RAF JN LUN $4 R$ r.

```
C. FOR EACH JIAGONAL, COMPUTES THE PERCENTAGE OF C
&. RASE PAIRING, AND WRITES IT ONTO LUN 4/ C
O
C THEN LOOKS ALONG EACH OIAGIINAL FOR RLOCKS C
C TF LENGTH > LR AND DISCARIS THE FIRST ELEMENT OF THE GLOCK C
C IF THAT QLUCK CONTAINS LESS THAN MIN RASE PAIRS &
C AFTER WHICH DIES A FRAME SHIFT OF IINE ANU CONTIVIIEC THQOUGH &
    THE DIAGONAL O.
    If AT LEAST mTN haSE pAIRS arE DISCOVEMEU wITHIN ThE hloCk C
    THEN ANY SPAGFS arE 0 filleg and the NExt block IS taken C,
    FEGM THE (LR+1)TH LOCATION C
    MITP|TS THE DIAGONALS TO LIN 40 C
C. C
```


SURQOUTINE PLITTM

C \quad.
C SUGRIJUTINE TO PLOT ThF DIAGONALS OF THE ITNOCT MATEIX C
C. STIJRED ON LUN 4 K C
C THE MATKIXIS TRIANGILAR AND IS STIREI UNE DIAGTNAL C
C PFR RECORT C
C C

PROGRAM GCANAL

r

```
c. PROGRAM TA DERFORM A GOC ANALYSIS ON A NUCLEOTICE SEQUENGF C
r. LOOKS AT EACH NUCLFOTIDE FROM 1ST+50 TII L.AST-4% C
O ANO EXAMTNES ITS NFARFST 5O NEIGHRORS GELIW AS NELL C
C AS ITS NEAKEST 49 NEIGHRORS AGOVE C
C. THE G+C CONTENT IF THFSE 100 NUCLEOTIDES IS RFCIROED C
O AS WELL AS JIST THE G CDNTENT C
C. THEN DUES A FRAMESHIFT OF 1 AND RFPFATS C
C. C
C INPJT IS FROM A FTIE MF NIJCLEUTIDES C
c. DUTPUT TO LUN 1? IN A FORMAT SUITAMLE FUR INPUTT C
C TH THE GRAPHIT PROGRAM C
C. C
```


PLJR LIGKARY

DROGRAM AMINOINX
 SURRDUTINE AMINIIIXX(NAMEACII),INOXACIO)
SUARTUTINE TO TRANSLATE A 3 CHARACTER AMINO ACII) NAAE INTU ITS ALPHARETIC IANEX [1-20J.
PARAMETERS ARE=
NAMEACIC= A CHARACIER BCO NAME
INDXACID- THF TNOEX NUMAER
The routine reans the vameaclo paraiatter and places the appripriate tniex nimper intu
INDXACIJ.
THE RDIITINF CONFS TO AN ERKIIR HALT IF AiN JLLEGA!
THREE CHARACTER CINF IS FNCUIINTERED.


```
    PHOGRAM ATLASINX
```



```
    SURRGUTJNE ATLASIDX(NAMEACII).INOXACIO)
    SURRDUIINE TO THANSLATE A I CHARACTER AMINII ACTG NAAE
    INTO ITS AI.HHARETIC TNDEX 11-20J.
    PAHAMETERS ARF.
        IVAMEACII= A 1 CHARACTER BCD HAIAE
            INOXACI!- THF INDEX NUMHER
        THE ROUTINE REAMS THF NAMEACIO FARAMETER ANIJ
        placES THE apprRPRTATE IV:EX NUMRER INTU
        INDxarlu.
        THE RUUTINE COMES TO AN ERRIGR HALT IF AN IILEGAL
        ATLAS CIDE IS ENCOHNTERFO.
```


PROGKAM ATTMIDK

SURROUTINE ATGMIDX(NAMEATOM, IDXATUM)
SURKOITIVE TO TPANSLATE AN ATOM NAML [NTO
a unimue INJEX NUMPER
PARAMETERS ARE*
NAMEATOM - A RCT ATIMTC NAME
IOXATIM - A UNTDUF INDEX NIMRER

PHOGRAM CIRCLFS

SIGRKOUTINE CIRCIES(N.NEXT)
SURROIJTINE TO TAKE THE NEXT RIITATIDV UF AN N IJTGIT wHMRFR.
USED with SIIRROUTTNE PERMUTE TO REDUCE THE PERMITATIONS TIS
CIMRINAIIONS.
parameters are-
$N \quad$ - ThE VUMRFR TG aE ROTATEO. IF N=0. TAKE THE
VEXT GOTATIJN JiN THE PREVIJUS NIMZER
next - SET TO The rgTateg value dF N
LIMITATION - WILL NHT WORK WTTH N LARGER THAN ? 224 m

PhTGHAM CUDOVIOX

SURKOUTINE CODONIDX(CNAME. INDXACID)
SURROUTINE TO TRANSLATE A 3 CHARACTEG CODON VAMF INTO THE INOEX NUMRER OF THE AMING ACIO IT CTDES FOR. stip is coded as a o inoex.
PARAMETERS ARE-
CNAME - A 3 ChARACTER RCO NAME
INDXACTI- THF INDEX NUMBER
THE POUIINE REAIS THF C WAME PARAMETER ANT
PLACES THE APPRIPRTATE I VOE x NUMRER INTI
INDXACTi).
ThE ROUTINF CGMES TT AN ERRUR HALT IF AN II LEGAL CODIN IS ENCOUNTERED.


```
    DRIGRAM CINTACT
```



```
    FUNCTIGN cITNTACT
    OISTANCE=CIVIACT(JATGM1.JATOM2)
    GIVES MINIMUM CONTACT OISTANCES IN ANGSTGOMS FOR AVY
    TWO OF THE FOLLIOTNG SET
            H.M.N.C. AND CH=METHYL GHOUD
    ATOM NAMES SHOUIT RE LEFT JUSTIFIEO
```


PRTGFAM CUVRADII

SHRREIITINE CDVRADII(IDXATOM.DIST)
SUAROUTINE TO DFTERMTNE THE COVALENT HAIIUS
FIIR AN ATOM
PARAMETERS ARE-
IDYATOM - THF ATOMIC SYMBOL INUEX NUMBER
HIST - ThF CRVALENT KADIUS IN ANGSTRIMS

PRDGRAM DISTANTE

SURHOUTINE OISTANCF (JCOIONI, JCOOMN2. MEASURE)
SURRRIUTINF TH MFASHRE ThE EVMLITTIUNARY DISTAVEE
GETWEEV ? ARRITRARY CHDONS. MEASURES THE NUHTER
DF GASE CHANGES RETMEFN THE TWM. SO THE FUNCTIOI
YIELIS A VALUE RETWEFN 0 ANII 3.

```
    PARAMETERS ARE-
        JCIOON1 - AN ARRITRARY COOON
        JCODINZ - GNOTHER AQGITRARY COODN
        measure - the numaer of gasf differences qetweln the:a
```



```
    PRTIGFAM IOXAMINT
```



```
    SURRIIUTINE IOXAMINIIINDXACID,NAMFACIO)
    SURROIITINE IO TRANSLATE AN INDEX NIIAGER [1-2O]
    to a 3 character amin! acio name.
    pARAMETERS ARE.
        INDXACIO- THE INDEX NUMGER
        NAMEACIII- A 3 CHARACTER HCD NAME
    THE ROUTINE REAIS THE INOXAGID PAKAMEIER ANG
    placES the apgrmpriatf name intI
    VAMEACIO.
    THE POUIINE r.UMES TO AN ERRUR HALT IF AN ILILFGAI
    INDEX NUMAFK IS ENTIUNTEREG.
```


PRTGFAM IIIXANAMF

SURRIUTINE IDXANAME (INOEX, NUMA, IARKAY)
SUGRIUTINE TO CINVERT AN ALPHARETIC. AMINT ACID TNOEX NIMMEF
Tis THE LIST OF NON-HYDRIJGEN ATMM NAAES FIRK THAT AMIVIT ACJB.
THE CROLK OF ATOMS WILL RE CA,N,CDOPCHP...
ATIM VAHE NUMENCLATURE IS TAKEN FROM THE SCHERGGA ARTICLE
CALCULATIDNS OF CONFIRMATIINS UF PULYPEPTIDFS
ADV. IN PHY.IIRG.CHEM. (19BH)
PARAMETERS ARE-
INOEX - AN AI PHARETIC INDEX NIIMRER
num - 「he numper mf nilmayurogen atoms in the a.a.
JARTAY- AN aPRAY IN whICh NAMES NILL GE StDRFO

PKMGPAM IOXATLAS


```
    SubkOUTINE IDXATL.AS(IN!XACIG.NAMFACID)
    SURR!UGTINE IO TRANSLATE AN INDEX NUMBER [1-2)]
    T0 A I characiter amin! arin name.
    PARAMETERS ARE-
    INOXACID- THF INDEX NIMMER
    NAMEACID- A I CHARACTER HCD NAME
THE RQUTINE RFANS THE INDXACID PARAMETEK ANI)
PLACES THE APPRIPRTATF NAME INTU
NAMEACJD.
THE ROUTINE COMES TO AN ERROIR HAIT IF AN ILLSGAL
INDEX NUMGER IS ENCOUNTERED.
```



```
    PROGRAM IOXATOM
```



```
    SURROUTINE IDXATOM(INDEX,NAMEATUM)
    SURROUTINE 1O TRANSLATE AN INDFX NUGGER TU
    AN ATOMIC SYMAILL.
    PARAMETERS ARE -
                            INDEX - AN ATMM INDEX
        NAMFATOM - AN ATMMIC SYMHOL
```



```
    PROGRAM JUXAUGON
```



```
    SURROUTINE IDXAUGON(INDEX,NUM, JARRAY)
    SURROUTINE TO TRANSLATE AN ALPHARETIC AMINO ACIO INIOEX
    NUMGER INTII A LIST OTF COLLAPSEO COOINS THAT CONF FOK
    THAT ACID.
    INDEX NUMRER O IS THE STOP CODE
    COLLAPSED CIOONS INCLIIDE A.COFPIIP AND
        M=MASTER=(U,A,G,C)
        Y=FYRIMIOINE=(U,C)
        REP\NTNE=(A,F)
    PARAMETERS ARE-
        IDX - AN ALPHARETIC INDEX NUMRER
        INIJM - THE NUMRER OF CJDONS THAT COUE FOR THE A.A.
        JARRAY - AN ARRAY POINTER WHERE THE 3 CHARACTER CODFS
                                OF THE COMINS WILL BE PLACED. 1 CODON/WURD.
                                LEFT JUSTIFIED
```

```
    ThE routine reans the injex and places the a>prapriate
    NIMMEF IGF CODONS INTO NUM. THEN THE 3 CHARACTFR COOUN
    CODES ARE PLACEN INTO EACH SUCCESSIVE ELEMFNT OF JAKRAY.
    THE GDUTINE COMFS TO AN ERROR HALT IF AN ILLEGAL INUEX
    NUMHER IS ENCOUNTFRED.
```



```
    PROGRAM IDXCODON
```

```
    PROGRAM IDXCODON
```



```
    SUAROUTINE IDXCODDN(INDEX.NUM. JARKAY)
```

 SUAROUTINE IDXCODDN(INDEX.NUM. JARKAY)
 SURGDUTINE TO TRANSLATE AN ALPHAPETIC AMINO ACTI INIJEX
 SURGDUTINE TO TRANSLATE AN ALPHAPETIC AMINO ACTI INIJEX
 NGMRER [0->0] INTD A LJST UF CODONS THAT COUE FOR T.HAT ACIT.
 NGMRER [0->0] INTD A LJST UF CODONS THAT COUE FOR T.HAT ACIT.
 INOEX vIJMHFIF O IS THE STMP CODE.
 INOEX vIJMHFIF O IS THE STMP CODE.
 PARAMETERS ARE=
 PARAMETERS ARE=
 IDY- AN ALPHARETIC INDEX NUMBER
 IDY- AN ALPHARETIC INDEX NUMBER
 NIIM= THE NIJMQER TF CODONS THAT CUDE FOR THE AMINII ACID
 NIIM= THE NIJMQER TF CODONS THAT CUDE FOR THE AMINII ACID
 JARRAYE AN AQRAY PITNTER WHERE THE 3 CHAKACTFR CODES DF TH
 JARRAYE AN AQRAY PITNTER WHERE THE 3 CHAKACTFR CODES DF TH
 COODNS WTLL RE PLACFD, 1 CIJON/WUPI, LEFT JIISTIFIE
 COODNS WTLL RE PLACFD, 1 CIJON/WUPI, LEFT JIISTIFIE
 the rquitiNE reans the Imdex and places the adpropaiate
 the rquitiNE reans the Imdex and places the adpropaiate
 NUMGER OF CUDONS INTO NIJM. THEN THE 3 CHAHACTFR COOJN CIODES
 NUMGER OF CUDONS INTO NIJM. THEN THE 3 CHAHACTFR COOJN CIODES
 ARE PLACEI) [NTO EACH SUCCESSIVF FLEMENT IGF JARRAY.
 ARE PLACEI) [NTO EACH SUCCESSIVF FLEMENT IGF JARRAY.
 THE ROUTINE CIMFS TI AN ERRIJR HALT IF AN ILIEEGAI INUEX NUMRER
 THE ROUTINE CIMFS TI AN ERRIJR HALT IF AN ILIEEGAI INUEX NUMRER
 IS ENCOUNTFRED.
    ```
        IS ENCOUNTFRED.
```



```
        PKDGRAM INVCDONN
```

```
        PKDGRAM INVCDONN
```



```
        SURHOUTINE INVGODON(JI.J?)
```

 SURHOUTINE INVGODON(JI.J?)
 PARAMETERS ARE-
 PARAMETERS ARE-
 J1 - A LEFT JUSTIFIEU hCD 3 CHARACTER CODJN
 J1 - A LEFT JUSTIFIEU hCD 3 CHARACTER CODJN
 j2 - ANTICMDIN FOR JI
    ```
            j2 - ANTICMDIN FOR JI
```



```
    S|RRIUTINE JEFFREYS(A,R,POINTPTHETA)
```



```
C
C DPERATOR TU ROTATE A PMINT(X,Y,Z) by ThETA DEgREES
C AROUT A LINE FRDM A TII A
C A IS CIJNSTRUEI TO QE THE OKTGIN
c. A IS A POINT IIN THE AYIS LINE THRTUGH THE URIGIV
```

```
8. POINT IS CUORDINATES TF THE PUINT TH RE HOTATEO
C THETA IS THE NIJMGER OF DEGREES OF KOTAIIUN
C
c
    IF A=R=0, THEN ULO VALIIES ARE ASSUMEU FOK THE IRIGIN AND
    RUTATION MATRTX. ITHERWISE, THE ORIGIN AINO ROTATION: MATRIX
c. AFE RFCOMPUTED.
C
```


PRTGRAM PATRSMAX

SURRDUTINE HAIRSMAX(JI.J?,KSCORE)
GUGRDUTINE TU ASSIGN a SCURE TO A NUGLEOTIOE PATR
PARAMETERS ARE-
J1 - NUCLEITITE 1 (RIGHT JUSTIFIED)
J2 - NUCLEOTIDE 2 (RIGHT JUSTIFIEO)
KSCORE - THE SCORF GC=2, AU=1, ANYTHINGELSE=0
NiJClEDTIUES must relong TO ThE SET
G. C.AH.A
$M=$ MASTER SET $=(G, C, 11, A)$
Y=PYHIMIDINE $=(U, C)$
$R=P U R I N E=(A, G)$


```
    PRDGRAM PAIRSMIN
```



```
    SURKDUTINE FAIRSMIN(JI,J?,KSCIIRE)
    SIJRKOUTINE TO ASSIGN A SCORE TO A NUCLEUTIDF PATR
    DARAMETERS ARE=
            J1 - NJCLENTTMF 1 (RIGHT JUSTIFIEO)
            J? - NIJGEMTIDE 2 (RIGHT JUSTIFIED)
        KSCORE - THE SCORF GC=2,AU=1,AIVYTHINf ELLSE=O
        NIJCLETTIDES MIJST aFLIONG TO THE SET
            GOC,H.A
            M=MASTER SET = (G,C:I,A)
            Y=PYHIMIDINE = (U,C)
            R=P|HINE = (A,G)
```


PROGRAM PERNUTF

SIIRROUTINE PERMITE(N.NEXTPERM)

```
SIIRROUTINE TO FIND ALL PJSSIRLE PERAUIATIONS OF N Ox.jECTS
PARAMETERS ARE
    N - ThF NIIMRER OF GRJECTS. If N=0. DERMIITE DELIVEGS
    THF NFXT DERMUTATTUN OVEK THE LAST VUN=ZERU N.
    NEXTPEKM- THF NFXT PFRMUTATIUN OF N OBJECTS. EXPRESGED G.S
                                    A RASE N NIGMER. IF ALL PERMUTATITVS HAVE BEEN
    EXHAUSTED, NEXTPERMO=0
LIMITATJON- N CANNOT FXCEEO g RECAUSE GF THE WAY NEXTPFRM
    IS EXPRESSE| (I,E. AS A DIGIT). רF COIJHSF
    IN PRACTICE. NEXTPFRM CANNOT EXCEED 2口?4-1
```


PRTGFAM RFVCDTIN
 SIJAROUTINE REVRODON(JI.J?) PARAMETERS ARE-

JI - A LEFT JISTIFIEI BCO 3 CHARACTEK COOJN
J2 - REVERSE CONON FIIR JI

PROGRAM ASTRINGOJSTKING,DSTHTNG
 FUNCTION ASTRING(RUFF, JSTART.LNGRUFF)

กR
FIJNCTION DSTRING(RUFF, JSTART,LNGPUFF)
FUNCTION TH SCAM OFF AN ALPHANIMERIG SYMROL TR A NUARER AND RETURN IHE RESIILTS IN Aid.
parameters are-
GUFF-THE FWA DF THE RUFFER TN WHICH THE STRIAG IS FDUNO JSTART-A CHARACTER PIISITIDN PCINTEK ON THAT aUFFER LNGRUFF-CHARACTFR LENGIH DF THE GUFFER

UPON EXIT, THE SCANNED ITEM WILL HE IN AQ. AVD JSTAHT WILL 子E UPDATE! TO THE I AST CHANACTER SCANNED+1

ThIS ROUTINE mill NOT SCAN BEyOND Livghuff. hLav.S AND GHECIAL CHARACTERS ARF IGNMRET. AN ALPHA STKING IS TERMTNATEO AFTEH \& CHARACTERS ARE ACCRUED OP WHEN A NIN-ALPHANUMERIC IS FNCTUNTERET.

```
            MEANT TO QF USE\cap IN THIS FASHION*
            HUFFER IN(N.|) (QIJFF(1),HUFF(LNGSUFF))
            |R
        KEAO(N:1un) RUFF
        F\capRUAT(1)0A4)
            JSTART=1
            SYMRUL=ASTKING(QUFF.JSTART,LNGBUFF)
            IFIJSTART.GI..LNGBUFF) GOTO ERROH
            C ITHEKWISE USE THE SYMRIIL AND JSTAKT WILL. ZF
            C AUTOMATICALLY UPJATEU
```



```
    PHOGRAM STAT
```



```
    SJAKOUTINE STAT(LUN.JTYFE,JSTAT)
    PROGRAM TH OFTERMINF IHF HAROWARF TYPE ANI CIRRENT
    STATUS IF A LUGICAL IJNIT.
    PARAMETERS ARE-
            LUN - THE LOGICAL INNTT IN OUESIIIN
            JTYPE - THE HAROWARE TYPE UF LUN
        JSTAT - THE 9 RIT STATIS IIF THE LIH
```



```
    FIINCTIUN TURSIUN(A•R.C.D)
```



```
C
C FIINCTION TU CIMPIJTE THE TOKSIUN ANGLE ;ETWEEN & ATOMS
C. A.H.C.AND O
C. COPLANAR CIS GONFIFURATION OF A ANI D IS TAKEN AS TERO
C TMD HANDRDIIK IF FIUCHEM CINNENIIINS IN TURSION ANGLES
C APE USED
C ThE TORSION ANGLE JS TN OEGREES
C
```


SURRIUTINE ANGLE X, Y YTHETA, DI:D2,CTH)

C
C SUBROUTINE TO FIND The angle. theta. between vectols
r. $\quad x$ AND Y. ASSUME hOTH x AND Y have tails at ThF JRIGIN
C. ALSO RETURISS OI. THE LENGTH JF X ANI)
r. \quad Re. THF LENGTH OF Y
c. AS wELL AS CTH, ThF COSINE DF THETA
c. ANGLE GIVES THE VECTOR DOT DROUUCT TF x ANO Y
c
 SIRROUIINE NORMAL (A,R,P)

C
C SURRGUTINE TO FIND THE NMRMAL, P, BFTWEEN TWII
c. VECTIRS. A AND B. A ANO B ARE ASSUMFD TO HAVE
r. TAILS AT TKIGIN

C P WILL EE A IINIT VFCTMR IIRIENTEN SUCH THAT A RIGHT HANUED SCREN r. DRIVEN IN THE HIRECTIIN IIF D WILL CARRY A INTO A
C. NTRMAL GIVES THE VFCTMR CRISS PROMUCT, AXB

C

SIMGRGUTINE FINIIROTI(VEC.THETA•PhI)

c
C SUBRDUTINE TD FIND THF ANGLES (THETA.PAI)
C NECESSARY TH RUTATF AN ARRITKARY VECTUK. VEC.
C ST THAT IT IS PARAILEL TO THE X-AXIS ANO PIINTING
c. IN THE POSITIVE DTRECTION
c. Theta - Displacfment from the xz plane

C WHEN ROTATING ARTUNI 7 AXIS
c. PHI - DISPLACEMENT FRIJM THE XAXIS

C HITHINTHE XT PLAVE
C WHEN RTTATTNG AROUNI Y AXIS
C.

ThFTA - IISPLACFMENT FROM The YZ HLANE

 WHEN ROTATTNG ARJUNI $X A X I S$PHI - DISPLACFMENT FR!IM THE X AXIS WITHIN THE XZ PLANE WHEN ROTATING AROUNO Y AXIS
C.

SURROUTINE RITXY(THETA,V)

0
C SURROUTINE TI PERFIRM A ROTATIGN IN THE XY PLANE c. RCTATIJN WILL HE IN THE CLIICKWISE UIRECTION VIENET C. FRIJM THE (+) 7-AXIS

```
C
```

```
SIIRRIJUTINE ROTYZ(THETA,V)
```


C SHRROUTINE TII PERFMRM A ROTATIUN IN THE YZ PLANE
C ROTATIUN WILL HE IN THE CLUCKWISE DIKECTIUN
c. VIEWET FROM THE $(+) X$-AXIS

SUBROUTINE ROTXT(THETA.V)

C SIIRROUTINE TO PERFMRM A ROTATION IN THE XZ PLANE
C ROTATIIIN WILL BE IN THE CLOCKWISE DIRECTION
c. VIEWED FRMIM THE $(+)$ Y-AXIS
C

PRIGGRAM VIWPANTI
 SIJRRTIUTIVE VDMAADIT (IOXATOMPOIST)
SIIRRIIITINE TO DFTERMINE THE MIMINUM VAN DER NAAI.S
CONTACT DIGTANCF FOH AN ATIM.
PARAMETERS ARE -
IUXATIM - THF ATIMTC SYMAOL INUEX GUMAEY
DIST - VAN DFR WAA S RADTISS I ANGSTPIMS

[^0]: 'twofold rotational symmetry' or palindromes in the base

