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Base Inclinations in Natural and Synthetic DNAs 

SECTION I 

Introduction 

Two Types of Experiments 

Numerical data obtained from biochemical or biophysical experiments 

often required further processing and analysis in order to extract properties of 

the molecular system of interest. Some experiments are well designed in that 

the derivation of the formula describing the properties of the molecular system, 

the instruments and measurements that recording the data, and the analyses 

that process the data ascribed to the formula, are tightly coupled. Correct 

results can not be obtained if any of the three factors (formula, data and 

analysis) fails. 

There are also experiments of the trial-and-error type. The formula is 

either missing or crudely constructed from certain assumptions, the instruments 

are not quite right for the job, or the method of analysis is not well specified. 

When these three factors are not well related to each other, the results are 

uncertain. Nevertheless, experiments of this type often pioneer new research 

directions. 

This thesis focuses on the role and nature of the analyses for a well 

designed experiment. 

Three Classes of Analyses 

The way numerical data is processed can be divided into three classes. 

In the first class, experimental data require only simple numerical or statistical 

methods such as computing the average, standard deviation, or linear 

regression. For example, using linear regression to determine the Michaelis 

constant, KM, and the maximal reaction velocity, V, from an 

enzyme-catalyzed reaction is a first class analysis. In the second class, the 

experimental data are functions of high complexity that are nonlinear in the 
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variables. Such functions demand robust and efficient optimization algorithms 

and extensive computer and human resources. Most importantly, the method 

of analysis must be developed, tested and proven. The mapping from X-ray 

diffraction pattern to atomic coordinates for the molecules is one example of a 

second class analysis. The third class of analysis is essentially the same as 

the second class, but differs in that the experimental data can not be fully 

analyzed in accordance to the specified formula because (1) computers with 

enough power are not available, and (2) the analysis applied to the 

experimental data must be designed around a downsized mathematical model. 

Disciplines of mathematics, numerical analysis and computer science are 

generally not emphasized for biochemistry and biophysics studies, and as a 

result, researchers may not be capable of developing and performing in-depth 

analyses for extracting reliable information from their measurements. 

A Third Class Analysis 

One example of a third class analysis is previous methods for analyzing 

the linear dichroism (LD) of DNA (this example is actually background for the 

study presented in SECTION II; see references 32 and 33 in BIBLIOGRAPHY, 

SECTION II for details). The goal of the experiment is to determine for DNA in 

solution: (1) whether the bases are perpendicular to the helical axis, and (2) if 

DNA bases are not perpendicular to the helical axis, then (2) at what angle the 

bases incline. In this experiment, absorption and LD spectra are measured in 

the UV for a DNA solution. For natural DNA with all four types of bases, there 

is a total of 16 absorption bands (four from adenine, three from thymine, four 

from guanine, and five from cytosine) that sum to give the spectra measured to 

175 nm. If bands are assumed to be of Gaussian shape, they are determined 

by three variables: position (wavelength maximum), intensity and band width. 

4 N1 

ABS(1)=E E 
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in which Ni is the number of bands for base j, X is wavelength, G is the 

Gaussian function, and 134, Ili and WI are position, intensity and width, 

respectively, for the band i of base j. The LD spectrum is linked to the 

absorption spectrum through four pairs of geometrical parameters (one pair for 

each base) according to the following expression: 

4 NI 

LD(A) =E E G(1,1)4,14,W4)3[3sin2aisin2(xj-84)1/2 
1=1 i=1 

in which al and z are the pair of parameters which define the inclination and 

axis of inclination, respectively, for base j. The Eig is a geometrical parameter 

defining the transition dipole associated with each band, and its value is 

determined from other experiments. 

From the analytical point of view, the goal of the experiment can be 

stated as follows: given the formula for the absorption and LD spectra, and the 

measured absorption and LD spectra for DNA in solution, determine the most 

probable inclination angle, a, for each base of that DNA sample. Clearly, a for 

a given base can not be determined without the paired x being determined at 

the same time, and both a and x can not be determined without parameters for 

all bands of that base being determined first. Furthermore, all variables for the 

four bases must be determined simultaneously. In terms of numerical analysis, 

this is a nonlinear optimization problem with 56 variables to be determined. 

Let us see how the task of optimizing 56 variables was accomplished in 

all previous work: 

1. Instead of fitting absorption and LD spectra simultaneously, the LD 

spectrum was divided by the absorption spectrum to obtain the reduced LD 

spectrum (L), and L was used for the fitting. 

L(1)=LD(1)/ABS(1) 

Since different pairs of dividend and divisor can give the same quotient, 
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important information is lost. Further more, a good fitting for the L spectrum 

does not automatically translate to a good fitting for both absorption and LD 

spectra. 

2. Only synthetic polymers consisting of two bases (Air and G/C) were 

computed. It would take too long and too much computer memory to compute 

four-base natural DNAs, and the results would have higher uncertainties. 

3. The position and width of a band from a given base were fixed for all 

synthetic polymers containing that base. The number of variables was 

effectively reduced by more than half at the cost of using inaccurate fitting 

parameters. 

4. The simplex algorithm was used to solve the nonlinear optimization 

problem. This is a lightweight algorithm: easy implementation, less progression 

per function evaluation, no estimate of errors for a computed solution, and 

easily trapped by local minima. 

Clearly there is room for improvement in the way experimental LD data 

are analyzed. How the improvement can be achieved, and deficiencies be 

removed, in order to bring this analysis from the third class to the second 

class, is the major topic of this thesis. 

The Requirements for a Successful Analysis 

During the past few years the advance in computer technology (in both 

hardware and software) has not only brought powerful computers into the 

laboratory, but also provided a great opportunity for researchers to tackle 

complicated data analyses that were once thought to be very difficult or time 

consuming. The wave of better and faster computers should not be viewed as 

just tools for data processing, however. With this new technology, we are now 

freed from computational constraints, from having to truncate and cripple a 

complex but complete expression for analyzing an experiment. Researchers 

can now look at a large scale problem (in terms of computer resources), and 
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redesigned their experiments and methods of analysis to have their questions 

answered. It is a mutual interaction between the computer technology and the 

way of thinking in scientific research. It is not just an one-way application of 

computer programs to analyze experimental data. 

However, it takes more than faster computers for a successful analysis. 

The skill in programming and the knowledge of numerical methods are 

essential in developing new analytical tools for a given experiment. The choice 

of the particular formula or algorithm, and the way they are implemented, 

influence not only the computing itself but also how we understand and 

interpret the results when they are obtained. The speed the computing 

progresses, the number of iterations required, and the way the error 

progresses, give not only the insight into the problem, but also into the 

,suitability of the numerical methods used. 

A complicated numerical analysis also demands an understanding of the 

architecture of the computer on which the program is running. Floating-point 

representation of real numbers on most modern computing machines has finite 

precision and as a result, roundoff errors arise and are passed on from one 

arithmetic operation to the next as the computation progresses. More often 

than not, the greatest loss in significant figures occurs when two numbers of 

about the same size are subtracted, so that most of the leading digits cancel 

out. How to estimate roundoff error (or better yet, how to avoid roundoff error), 

is essential for a stable and predictable implementation of numerical algorithm. 

Also there is the task of debugging. While debugging of the initial 

program is not considered by many biochemistry and biophysics researchers, it 

is the core of programming. Experience of the programmer with the specific 

computer language, operating system, and algorithm, dictate the difficulty one 

can expect during the debugging process. 
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A Second Class Analysis 

Now, let us see how the requirements for an analysis of LD experiments 

on DNA are met, so that it is reduced to second class: 

1. Absorption and LD spectra are fitted simultaneously rather than using 

the reduced LD. 

2. LD data are analyzed for all four bases in natural DNAs. 

3. Since absorption bands are generally asymmetric, the log-normal 

shape is used instead of the Gaussian shape. A log-normal shape is 

determined by four variables (position, width, intensity and skewness). Further 

more, we treat all these as free variables instead of fixing them. 

4. The most powerful problem solver for nonlinear optimization, the 

Levenberg-Marquard algorithm, is used for maximum performance. 

5. Two more bands are added to adenine to make the fitting more 

realistic. 

6. All aspects of the program can be fine tuned to fit our specific needs. 

For example, LU decomposition is used in this study to invert a positive definite 

and symmetric matrix, because it is faster than singular value decomposition 

and suffers less roundoff error than Gauss-Jordan elimination. Using singular 

value decomposition for the matrix inversion would slow down the program 

significantly, while using Gauss-Jordan elimination would accumulate roundoff 

error to such an extent that a matrix close to singular could not be inverted 

successfully. 

Preview of SECTION II 

The body of this thesis contained in SECTION II. It is based on the 

manuscript for a published paper in J. Am. Chem. Soc. 1993, 115, pp. 

1205-1214, entitled: Base inclinations in Natural and Synthetic DNAs. An 

extensive literature review on the study of base inclinations in DNAs is in the 

INTRODUCTION section of the manuscript. Following the INTRODUCTION 
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section is the METHODS section, in which mathematical and numerical 

aspects of the analysis methods for the absorption and linear dichroism spectra 

for monomer and polymer DNAs are described. Since all spectra analyzed in 

this study were measured previously in our laboratory, sample preparations 

and measurements are left out from the METHODS section. It is then followed 

by the RESULTS and DISCUSSION section. 

In order to make this thesis a complete presentation, there are some 

significant changes from the published paper. The heading Algorithm in the 

METHODS section has been replaced by Nonlinear Least Squares Fitting, 

which now contains the derivation of the nonlinear optimization algorithm 

described in more detail. A new heading (LD Spectra for the Hypothetic 

Single Stranded Poly[d(T)]) and a new figure (Figure 6) are added to the 

RESULTS and DISCUSSION section to illustrate how LD spectrum changes as 

a function of inclination angles and axes of inclination. Two figures (Figure 10a 

and 10b) and a paragraph are also added to the RESULTS and DISCUSSION 

section (Repeated Fittings with Randomized Transition Dipole Directions) 

to show that the inclination angles and axes of inclination obtained in this study 

are very stable relative to small variations in the transition dipole directions. A 

completely new section, RECENT DISCOVERIES, along with two figures 

(Figures 11 and 12) have been added to explain interesting questions 

observed in this study that were not understood when the original manuscript 

was written. Finally, the usage and source code of the two computer 

programs, ABS-LD and PARSE-R, written and used in this study, are included 

in an APPENDIX. These two programs are part of the methods and results; 

they deserve a place in this thesis. 
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ABSTRACT 

A sophisticated computer program is developed to analyze flow linear 

dichroism data on nucleic acids for individual base inclinations. Measured 

absorption and linear dichroism data for synthetic AT and GC polymers and 

natural DNAs are analyzed. The reliability of the program is tested on data for 

the synthetic polymers, and the results are similar to earlier, more 

straightforward analyses. For the first time, specific base inclinations are 

derived for all bases individually from the linear dichroism data for natural 

deoxyribonucleic acids. For B-form DNA in aqueous solution at moderate salt 

concentrations, the inclinations from perpendicular are as follows: d(A) = 16.1 ± 

0.5; d(T) = 25.0 ± 0.9; d(G) = 18.0 ± 0.6; d(C) = 25.1 ± 0.8 deg. Our results 

indicate that the bases in synthetic and natural DNAs are not perpendicular to 

the helix axis, even in the B form. 
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INTRODUCTION 

Watson and Crick depicted their helical structure for DNA with 10 base pairs 

per turn with the bases perpendicular to the helix axis. This was consistent 

with Wilkins' X-ray patterns for fibers of DNA at high humidity, the B-form. 

Although the data in diffraction patterns from fibers are limited, subsequent 

model building indicated a 10-fold repeat with bases perpendicular to the helix 

axis for the B form.' However, DNA is known to be polymorphic,2-9 with the 

particular structure sensitive to sequence, cation type, temperature, and solvent 

(or, in the case of fibers and crystals, the humidity). A structural model built on 

X-ray diffraction, however, may depend on packing forces, and not actually 

exist in solution where DNA molecules are relatively free. 

Linear dichroism (LD) is a method for determining the inclination angle 

(the total effect of tilt, propeller twist, roll, and buckle) of a given kind of base in 

a DNA molecule in solution.10-28 It is based on the fact that (1) each kind of 

base has different ic-le transitions with dipole moments of known direction in 

the base plane; (2) the long DNA molecules can be aligned so that, at least on 

average, the helical axis lies in the direction of alignment; and (3) the 

anisotropic absorption of transition dipoles in a base can be expressed as a 

function of the base inclination angle from perpendicular to the helical axis. 

DNA molecules are generally aligned either in films or fibers by the 

shear forces of flow or by their special polyelectrolyte properties in an orienting 

electric field. Of course, complete alignment is impossible. Base inclinations 

are deduced in the case of flow LD by modeling the shear forces in the flow 

cell, extrapolating to infinite shear, or making use the variation in LD as a 

function of wavelength. Base inclinations are usually deduced in the case of 

electric dichroism by making measurements at various fields and extrapolating 

to infinite field. The orientation problem may be further complicated by the 
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possible existence of tertiary superstructures, which would prevent complete 

alignment of the helix axis in the direction of alignment even in infinite shear or 

infinite field. Recent recognition that bent DNA does exist, typified by the 

kinetoplast fragments, means tertiary superstructures deserve serious 

consideration. Detailed reviews have been written covering these 

points.12141527 

In an LD measurement the absorption is measured parallel and 

perpendicular to the direction of alignment at one or more wavelength, and the 

data are conveniently expressed as the reduced dichroism given by 

[AIM-ALM] moo
L(1.) 

A(A) A(A) 
Eq. 1 

where A(X) is-the normal isotropic absorption at wavelength X. If the base 

planes in B-form DNA are nearly perpendicular to the helix axis, then for 

complete alignment in the absence of complicating factors, L(X) will be -1.5 for 

the in-plane 7c-n transitions, regardless of the wavelength and the 

corresponding transition dipole directions. 

Most electric dichroism work since 1978 has utilized samples of 

homogeneous length and reduced dichroism at the absorption maximum of 260 

nm extrapolated to infinite field.16,18-2° Measurements have been made on 

different DNA lengths, with the idea that it should be easier to obtain complete 

alignment for short lengths of DNA without exterior complications. However, 

considering all of the data together, it is clear that the shorter the DNA length 

the lower the magnitude of the negative L(260 nm). At one extreme Lee and 

Charney19 obtained -1.41 for a DNA length of 9200 base pairs, while Hogan et 

al.16 obtained -1.11 for a DNA length of 154 base pairs at the other extreme. 

Hogan et al.16 interpreted their data in terms of a base inclination from 

perpendicular of about 17°. In contrast, Dieckmann et al.2° and Lee and 

Charney19 noted that a bent tertiary structure in the DNA would rationalize the 
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value for L(260 nm) as a function of DNA length; as the DNA length increases 

it is presumed that the DNA becomes increasingly straight in the orienting 

electric field. This data would still be consistent with the bases perpendicular 

to the helix axis if (1) extrapolation to infinite field are not correct or (2) the 

DNA has a tertiary superstructure so that complete alignment is impossible. 

Rau and Chamey29 has questioned the extrapolation to infinite field and have 

provide a model for the orientation of DNA as a function of field that explains 

the observed data. When everything is taken into consideration, Charney et 

a1,25 believe that L(260 nm) = -1.41 for the long DNA molecules is consistent 

with the Watson-Crick structure and an average base inclination of about 10° 

from X-ray studies on fibers.' 

Flow LD measurements also give a negative reduced dichroism for 

B-form DNA.1"2,1722-24 The data are independent of wavelength between 280 

and 250 nm, suggesting that the bases are perpendicular to the helix axis. 

The reduced dichroism is less negative in the 250 to 220 nm region, and this 

change in L has been presumed to be due to out-of-plane n-n. transitions." In 

general, workers have interpreted their LD data as being consistent with the 

Watson-Crick model. Our laboratory has extended the LD measurements of 

nucleic acids into the vacuum UV region to 175 nrn.24.343-33 Our data over this 

extended range show a reduced dichroism that varies with wavelength for 

natural B-form DNA,24.31 indicating that the bases are not perpendicular to the 

helix axis. 

It is not straightforward to relate either electric or flow LD data to base 

inclinations; the measurement depends not only on base inclinations, but also 

on the angle that the dipole for each transition makes with the axis around 

which the base is inclining. However, with this extended data we were able to 

compare the relative values of the reduced dichroism for the 260- and 220-nm 

7E-Tr regions to obtain a minimum average base inclination from perpendicular 

of about 15° for standard B-form DNA 24,3' We do not attempt to model our flow 

http:DNA,24.31
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or extrapolate our data to infinite alignment. The beauty of extending the LD 

data to shorter wavelengths is that absolute measurements are not necessary, 

and base inclinations can be determined from the wavelength dependence 

(overall spectral shape) of the data. DNA tertiary structure, such as a 

superhelical coil or simple bending, affects LD as a multiplicative factor, which 

affects the values at infinite field or flow but which does not affect the 

wavelength dependence of the data.12.14.1527 

We have also measured the LD of simple repeating double-stranded AT 

and GC polynucleotides from 320 to 175 nrn.32'33 This data can be decomposed 

into individual absorption bands, and since the transition dipole directions are 

known, it has been analyzed for inclination and axis of inclination for the 

various bases. The reduced dichroism for these double-stranded 

polynucleotides varies with wavelength, indicating that the base planes are not 

perpendicular to the helix axis. Many workers believe that loss of negative 

reduced dichroism around 230 nm is due to an n-n transition with an 

out-of-plane transition dipole. We analyze our data without the 245-212 nm 

spectral region, and the wavelength dependence of the data still predicted 

significant inclinations for the bases. Furthermore, the 230-nm feature in the 

reduced dichroism was found to be due to the angle that the ic-n transition 

dipoles made with inclination axis in this region, and existence of an 

out-of-plane n-n need not be postulated to explain the measurements. If the 

minimum magnitude of the reduced dichroism for B-form DNA at 223 nm is 

compared with the maximum magnitude at 260 nm, a minimum average base 

inclination of about 19° is derived for natural DNA in the standard B form.' 

Here we develop a sophisticated algorithm in order to analyze the LD 

data of natural nucleic acids as a function of wavelength for individual base 

inclinations and axes of inclination. With an algorithm that relies so heavily on 

the computer, it is important to be sure that the results are not an artifact 

generated by the computer. So we use this new method to reanalyze the data 
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for the synthetic AT and GC polynucleotides, which were analyzed in a more 

straightforward way in the original publications.32.33 The results of this new 

method are in reasonable agreement with the results of the original, simpler 

analyses. Furthermore, the inclinations and axes of inclination that we derived 

for the individual bases in B-form DNA predict L(260 nm) of -1.40 for perfect 

alignment of the DNA helix axis along the direction of orientation. This agrees 

with the values obtained by extrapolating electric dichroism data to infinite field 

for monodispersed samples of long DNAs"" and supports the argument that 

large electric field should overwhelm configurational and thermal bending for 

long DNAs.27" The fact that L(260 nm) = -1.40 at perfect orientation can 

correspond to significant base inclinations, demonstrates that it is important to 

take into account the relative orientation of transition dipole to the axes around 

which the bases incline when interpreting LD data. 

Flemming et al.26 have used infrared LD to investigate the base 

inclination of A- and B-form DNA in oriented films. They find inclinations from 

perpendicular of 28-30° for the A form and 18-30° for the B form, in agreement 

with our work. Theoretical calculations support large base inclinations in 

DNA.34.36 In particular, Sarai et al.35 find that the origin of the B-form double 

helix can be attributed in large part to the atomic charge pattern in the base 

pairs. That is, the base pairs alone have a strong tendency to form a helical 

structure independent of the backbone. Further, propeller twisting is found to 

enhance the electrostatic interaction by positioning favored atom pairs closer 

together. One might expect that, in aqueous solution where the DNA is free of 

the packing effects found in crystals and fibers, bases may be freer to assume 

larger propeller twists with the concomitant larger base inclination in order to 

maximize favorable base-base interactions. Ansevin and Wang36 have 

proposed a new model for the Z-form with a fair base inclination. Edmondson 

used the molecular mechanical program AMBER37 to investigate the potential 

energy of conformations consistent with his LD results for poly[d(A)-d(T)].38 He 

http:poly[d(A)-d(T)].38
http:DNA.34.36
http:publications.32.33
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found that the large 50° propeller twist maximizes intrastrand base-stacking 

interactions, and that the total potential energy was comparable to that 

calculated for X-ray diffraction models of DNA. Large propeller twists do not 

really preclude hydrogen bonding, because hydrogen bonds are not very 

directional. 

Here we present the results of analyses of synthetic polymers and 

natural DNAs using our new algorithm and recently determined transition dipole 

directions. Large inclinations are confirmed for the bases in synthetic 

polymers, and specific inclinations are determined for the first time for the 

bases in natural DNAs. 
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METHODS 

Nonlinear Least Squares Fitting 

Suppose we are fitting a measured spectrum y(A.), i=1,...,m, to an 

analytical function Y(X1,x), where x is a vector of n parameters (unknown 

variables). The relationship between y and Y can be expressed as 

AA)) = Y(A1,x) + ei 
Eq. 2 

in which ei is the measurement error associated with y(2). If we assume that 

the ei's are normally distributed and independently random, and apply 

Maximum Likelihood Estimation to Eq. 2, it can be shown that the best solution 

_(the most likely values) for the n variables in x can be determined by 

minimizing 

m m 

F(x) = E ei2 = E br(.)-Y(xpx)i2 
i -1 i -i 

Eq. 3 

If the analytical function Y linearly depends on x, then Eq. 3 is a linear 

least squares minimization and the exact solution for x can be calculated by 

solving the following set of simultaneous equations, 

aFaxi(x) 0, j = 1,...,n 

Eq. 4 

However, as we will see later, the function Y of this study is nonlinear and we 

have to resort to other indirect methods. Based on preliminary studies, the 

method we chose to solve this nonlinear least squares minimization problem is 

the Levenberg-Marquardt algorithm,39 abbreviated as LM. First let's express 
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F(x) as a Taylor series expansion around an initial guess of x, xo, up to the 

second order, 

F(x) = F(xo) + (x-x0) Kid + (x-x2 F"(%) 

Eq. 5 

Now Eq. 5 is linear in x, so linear least squares minimization (Eq. 4) can be 

applied, 

8F(x) ref%) (x_xd F"(%) = 0 

x = x0 -FAxoiKx0) 
Eq. 6 

Because the Taylor series expansion of F is truncated after the second order, 

Eq. 6 will not bring us the optimum solution for x in just one step after an initial 

guess. Instead, if we replace x with xk+, and x0 with xk, where k is a sequence 

of iterations, and apply the LM algorithm to Eq. 6, we can rewrite Eq. 6 as 

follows: 

xk.i = xk [CO) + gxk)Ti(xk)] J(x1)TF( ;) 
Eq. 7 

in which Ck is the LM coefficient, J(xk) is an m-by-n numerical Jacobian matrix 

evaluated at xk, and D is a diagonal matrix with entries equivalent to the 

diagonal of J(xk)I-J(xk). The ith row (1=1,...,m) and r columns (j=1,...,n) of the 

Jacobian matrix at each iteration is calculated by 

Fi(x+hui) F1(x) 

h 

in which ul is the jth unit vector and h is a small real number used to 
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approximate the first partial derivative of Fi with respect to xi. 

The Levenberg-Marquardt coefficient Ck in Eq. 7 is systematically 

updated according to results of the previous iteration. This allows the behavior 

of LM to switch smoothly between Gauss-Newton and steepest descent 

algorithms, and it is this flexibility that allows LM to locate the global minimum 

within a multidimensional space much faster than, say, Powell's conjugate 

gradient algorithm40 used in our preliminary studies. 

The diagonal elements of the n-by-n matrix [J(xIJTJ(xial are the 

variances of the elements in xk at the kth iteration if F is a linear function of x, 

and measurement errors e,'s are normally distributed and independently 

random.41 However, we do not know our error distribution, and as noted, our 

function is not linear. Although strictly speaking our diagonal elements are not 

the variances, they will be related to the true variances, and the difference 

'between the diagonal elements for two consecutive iterations will still tell us 

whether xi( is more stable than xio. Of course, one can take the sum of 

squares error in fitting a spectrum to a minimum, but there is error in the data 

that is being fit so exactly. Instead we monitor the stability of xk through the 

diagonal elements of [J(xk)TJ(;)]-1 and stop fitting when xk is stable. 

Fitting Monomer Absorption Spectra 

To decompose a monomer absorption spectrum into its constituent 

bands, we must first choose an analytical function that can best describe the 

shape for each absorption band. Gaussian or Lorentzian functions are most 

often used in the decomposition of UV or IR spectra 28'32 However, the shape of 

an UV absorption band is generally asymmetric, and this is well represented by 

the log-normal function.42'43 With four parameters (band center 1.t, an integrated 

intensity C, width at half-height a, and skewness Q), the log-normal function for 

a single band as a function of wavelength is 

http:random.41
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AO.) = Cexp{ 1[ In(G/11) -Z]2 ?/ 2i ifG >0 
2 Z 

A(1) =0 ffGs0 

in which G-11+R-X, R= 2aQ/(Q2 -1), and Z=InQ/(21n2)12. In some cases, the 

skewness increased unreasonably to fit imperfect data perfectly. We limited Q 

to the range [1.0,1.5] and this limit barely affected the fit. 

Thus, if a spectrum is to be decomposed into N individual bands, 4N 

variables would have to be determined, and the fitted spectrum (as opposing to 

measured spectrum) is 

N 

Ate,80) = E NA, iii, CI, op 131) 

Since we know from other work how many bands exist within the measured 

spectrum for each monomer,44-48 we know the value of N for each base, which 

corresponds to the smallest number of bands necessary to give a satisfactory 

fit to the absorption spectrum. 

To begin the decomposition, initial values for position pi intensity C and 

width a are taken from previous WOrk32.33.44-48 Skewness Q is arbitrarily assigned 

the value 1.2. Fittings to the monomer spectra by the LM algorithm is quite 

straightforward and the results are stable. 

Fitting Polymer Absorption and LD Spectra 

The parameters determined by fitting the absorption spectra are the 

initial guesses for simultaneously fitting the absorption and LD spectra for each 

type of polymer using the LM algorithm. The relation between isotropic 

absorption and LD for a transition dipole i of base j is given by15'32'33 
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LD (A) = At(1) 3 S [3 sin'a sinkx 1]/2 
Eq. 8 

in which 84 is the angle between transition dipole i and the vector N3.--,C6 if 

base j is a purine, or N1-+C4 if pyrimidine; al is the inclination angle of base j 

from perpendicular to the helix axis (the result of both twist and tilt); xi is the 

angle between the in-plane axis (perpendicular to the helix axis) around which 

the base inclines and the vector to which 84 references; and S is the factor that 

makes up for imperfect orientation in the flow. The signs of x, 8 and a follows 

the right-handed Cartesian coordinate system, and the angles are illustrated in 

Figure 1. 

Since our polymers in these studies contain more than one base, the 

absorption and LD spectra are as follows: 

M Nj 
Apay(1) = E E At(1)

j=1 I=1 

Iv/ Ni 

LD 7(x) = E E 'mum 
j=1 i=1 

in which rsli is the number of transitions for the jth base and M is the number of 

bases. We are analyzing the wavelength dependence of the data, so that 

imperfect orientation, including the effect of tertiary superstructures, does not 

affect our analysis.12.14,15.17 

The objective is to determine parameters for all bands, and a and x 

angles for the bases in the polymer, through the LM algorithm as described 

above, simultaneously fitting the absorption and LD spectra. We reiterate that, 

due to the large number of variables and different scales of measurement 

errors of the absorption and LD spectra, our chosen fit is at the unique point 

http:analysis.12.14,15.17
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Figure 1.	 Diagram showing the definition of a, x and 8 angles. Here a 
purine (adenine) is inclining around the X axis by an inclination 
angle, a. The angle between the reference N3-4C6 and the 
inclination axis is x, and between N3)C6 and the transition dipole 
is S. Note that a pyrimidine would diagram like the six membered 
ring of the purine shown here, with the equivalent reference being 
N1>C4. 
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along the minimization path not too far above the global minimum of residuals, 

at which most variables have the smallest variance. We monitor all variances 

after each iteration and choose the bottom of the multidimensional valley of 

variances as our end point. 

The transition dipole direction, 84, associating with transition i of base j, 

must be known to fit LD spectra, and these are taken from Clark and 

co-workers .4448 Initial values for parameters for the absorption and LD bands 

are those from our fitting of monomers (Table I). Initial a and x angles for the 

synthetic polymers are from earlier WO rk24'32'33 and for DNA are from our results 

for the synthetic polymers. 

Uncertainties in Transition Dipole Directions 

The measured directions of the transition dipoles are assumed to be 

correct and unchanged for all polymers and DNAs studies. However, as 

mentioned in the reports of dipole direction measurements, there are 

uncertainties in these directions. To determine how the uncertainties affect the 

results, we repeated each fitting 100 times with transition dipole directions 

randomly varied within ±10°. The average value from the 100 runs for each 

variable (parameters for each band and a, x angles of each base) is our 

reported value, and the standard deviation is for the 100 runs. 

Validation of a and x angles 

A given base pair will have quantities that vary with a and x angles of 

the pairing bases, such as hydrogen-bond distance and angle, distance 

between purine C8 atom and pyrimidine C6, distance between the two C1' 

atoms, and propeller twist (the dihedral angle between base planes). By 

constructing base pairs from our a and x angles, calculating these base-pair 

parameters, and comparing with published parameters, we can determine 

whether a and x angles derived this way are reasonable. Another reason for 
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Table I. Decomposition of Monomer Absorption Spectra 

Monomer u (nm) 2;x10-3 a (nm) p 6(deg) 

dAM P 266.4 162.7 11.2 1.20 83' 

255.0 319.1 13.9 1.33 25a 

206.6 467.0 10.5 1.21 -45' 

195.3 78.7 6.1 1.38 15' 

184.9 282.7 7.6 1.29 72' 

173.6 60.2 4.5 1.00 -45' 

TM P 265.1 363.0 18.0 1.25 -9" 

204.7 409.5 19.7 1.50 _53b 

176.6 190.7 5.8 1.42 -26b 

dGMP 274.5 288.7 16.7 1.50 -4° 

248.5 309.5 13.9 1.10 -75° 

198.8 471.2 11.6 1.03 -71c 

183.2 449.4 11.6 1.50 41° 

dCMP 269.0 301.2 15.3 1.12 6d 

228.1 319.2 19.8 1.31 ..35d 

211.6 86.8 7.1 1.00 76d 

196.5 403.1 9.9 1.43 86d 

170.1 94.0 12.4 1.03 Od 

aClark45.46 

bNovros and Clark 'e 
cClark.44 
dZaloudek et al." 
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this validation has to do with the sign of a. Because positive and negative a 

angles of the same magnitude would give the same LD spectrum, we 

investigated the four possible base pairings with the signs of the angles as +/+, 

+I-, -I+ and -/- for each base pair. 

With atomic coordinates for the four bases taken from Amott,49 

construction of a base pair begins by placing the bases in a plane (assigned to 

be the xy plane) perpendicular to the direction of light polarization (assigned to 

be the z axis). Each base plane is rotated about the inclination axis for a 

degrees. Because LD contains only information about a base instead of a 

base pair, we are free to move the two bases in space and rotate around the z 

axis, as long as we keep the angle between each base plane and xy plane 

constant. With minimal effort the two or three hydrogen-bond distances can be 

adjusted to an acceptable value, and then other base-pair parameters are 

calculated. 
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RESULTS and DISCUSSION 

Decomposition of Monomer Absorption Spectra 

Absorption spectra for dAMP, TMP, dGMP and dCMP are decomposed 

into 6, 3, 4, and 5 bands respectively, as shown in Figures 2-5. The position, 

intensity, width and skewness of each band are listed in Table I. Obviously, 

the parameters for the 173.6-nm band of dAMP and the 170.1-nm band of 

dCMP are neither well determined nor particularly relevant. However, the red 

end of a shorter wavelength band is necessary in this region to realistically fit 

the data. Also listed in Table I are the corresponding transition dipole 

directions, which are vital for successful decomposition of LD spectra. 

During preliminary studies only four bands were used to decompose the 

dAMP spectrum, as with work previously done in our laboratory.32 The result in 

calculating the spectrum fits the experiment except for the region between 190 

and 210 nm, and according to Clark a minor band is also in this region, which 

we now include in our fit (Figure 2). Fitting of the TMP spectrum is relatively 

easy because its three components are well separated (Figure 3), but these 

bands are not Gaussian and show that the log-normal function with its 

skewness parameters is more suitable to approximate electronic absorption 

bands. The major components of the dGMP and dCMP spectra can be 

distinguished as peaks or shoulders (Figures 4 and 5). 

LD Spectra for a Hypothetical Single Stranded Poly[d(T)] 

To illustrate how an LD spectrum changes as a function of a and x 

angles, we computed two LD spectra according Eq. 8 for single stranded 

poly[d(T)], assuming a = 0°, x = 20° (LD 1) and a = 40°, x = 20° (LD 2). The 

alignment factor, S, in Eq. 8 is assumed to be 1.0 (perfect alignment), and we 

neglect base-base interactions to simplify visualizing the effect of base 

http:laboratory.32
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Figure 2. Decomposition of dAMP absorption spectrum: () is measured, 
(..) is fitted, and ( ) is decomposed. 
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Figure 3. Decomposition of TMP absorption spectrum: () is measured, 
( is fitted, and () is decomposed. 
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Figure 4. Decomposition of dGMP absorption spectrum: () is measured, 
) is fitted, and ( ) is decomposed. 
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Figure 5. Decomposition of dCMP absorption spectrum: (000) is measured, 
) is fitted, and ( ) is decomposed. 
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inclination on the CD. The three absorption bands for d(T) are taken from the 

decomposition of the TMP absorption spectrum (Figure 3), and the direction of 

these three transition dipoles are taken from Table I. In Figure 6, the LD 1 

spectrum with sign reversed is plotted as a heavy solid line and its constituent 

LD bands are plotted as thin solid lines; the LD 2 spectrum with sign reversed 

is plotted as a heavy dotted line and its constituent LD bands are plotted as 

thin dotted lines. 

The overall shape (wavelength dependence) of the LD 1 spectrum is the 

same as that of the TMP absorption spectrum (Figure 3), and the intensity of 

the LD 1 spectrum is 1.5 times the intensity of the TMP absorption spectrum, 

as expected for an LD spectrum of a DNA polymer with bases perpendicular to 

the helix axis (a = 0°). The LD 2 spectrum is significantly different from the LD 

1 spectrum due to the different a angle, which also gives the x angle 

relevance. As depicted in Eq. 8, when a = 0° (for LD 1), all of the three LD 

bands are obtained by multiplying their respective absorption bands to the 

same factor, -1.5, and the resulting LD spectrum is exactly -1.5 times the 

intensity of the absorption spectrum. On the other hand, when a* 0° (for LD 

2), each LD band is obtained by multiplying its respective absorption band to a 

different factor, which depends on the x angle of the d(T) and the 8 angle 

associated with that band, and the resulting LD spectrum takes a unique 

shape. 

Different a and x angles (with a * 0°) for DNA polymers give rise to 

different LD spectra. This is the basis for determining a and x angles from LD 

spectra. 

Decomposition of Synthetic Polymer Absorption and LD Spectra 

Using the decomposition of the monomer absorption spectra as the 

initial guess (the value is halved to approximately compensate for 

hyperchromism), a polymer absorption spectrum could be decomposed, and 
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Figure 6.	 LD spectra for a hypothetical single stranded poly[d(T)]: (mi....) is LD 
1 spectrum, ( ) are LD bands of LD 1 spectrum; (.....) is LD 2 
spectrum, ( ) are LD bands of LD 2 spectrum. LD 1 and LD 2 
spectra are calculated according to Eq. 8 with a = 0°, x = 20° and 
a = 40°, x = 20°, respectively. The three absorption bands 
corresponding to the LD bands in LD 1 and LD 2 spectra are taken 
from the decomposition of the TMP absorption spectrum. 
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the resulting g., C, a and Q parameters were used to decompose its LD 

spectrum with the a and x's as the variables. The problem with this two-step 

procedure is that the fits to absorption and LD spectra are correlated. We also 

tried fitting both spectra at the same time with all of the variables, and the error 

in fitting the LD spectrum scaled to reflect the fact that the intensity of the LD 

spectrum is much smaller than that of the absorption spectrum. As the total 

sum of squares error for the fitting is minimized, the sum of squares error for 

the LD spectrum is nearly synchronous with that of absorption spectrum 

(Figure 7), and we can let the fitting proceed until the global minimum for sum 

of squares error is reached. The error in the fit will be less than the error in 

the measurements, and this unrealistic fitting results in some unrealistic band 

parameters. For example, a band position may move to 400 or 100 nm, a 

band intensity may become zero, or a band width may decrease to 0.1 nm. 

There is error in measurements, so we must stop the fitting before it is 

overdone. Thus, we choose to stop when the variables become stable, as 

described in the METHODS section. The advantage of this procedure is 

2-fold: (1) the point along the minimization path is easily identified; and (2) the 

weight assigned to scale fitting errors of the LD spectrum has little effect on the 

fitting results, so we can weigh both absorption and LD spectra equally. 

Figure 7 shows the standard deviation in a of the four bases for A-form 

DNA. We see that a stable solution with low standard deviation is achieved 

roughly when the log of the sum of squares error for the absorption (ABS.ssq) 

and LD (LD.ssq) is 6.0-6.4. The exactly choice does not affect the results 

significantly, and the method is stable. Further fitting leads to a larger standard 

deviation and instability, as Figure 7 shows. Note that ABS.ssq and LD.ssq 

are not perfectly correlated. 

The results of decomposing the absorption and LD spectra for B-form 

poly[d(A)-d(T)] are shown in Figures 8a and 8b, and listed in Table II. For 

adenine, the first band of d(A) shifts toward longer wavelength by +10.5 nm 
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Figure 7.	 Sum of squares error for absorption (ABS.ssq) versus LD 
(LD.ssq), is correlated in this algorithm, , LD.ssq decreases as 
ABS.ssq decreases, here for A-form DNA. To avoid overfitting 
the data, we look for a stable solution with small variances in the 
variables. Standard deviation for the inclination angle a of
d(A) (.), d(T) ( ), d(G) (..--.), and d(C) ( .....) is 
minimized, as for the other variables, around LD.ssq of 6.0 to 6.4. 
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Figure 8a.	 Decomposition of poly[d(A)-d(T)] absorption spectrum: () is 
measured, (N.mi.) is fitted, ( is d(A) decomposed, and ( ) is 
d(T) decomposed. 
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Figure 8b.	 Decomposition of poly[d(A)-d(T)] normalized LD spectrum: (DOD) 
is measured, (---.) is fitted, ( ) is d(A) decomposed, and ( ) 
is d(T) decomposed. 
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Table II. Decomposition of Poly[d(A)-d(T)] Absorption and LD Spectra 

Base g (nm) Cx10-3 a (nm) p a (deg) X (deg) 

d(A) 276.9±1.0 26.1±4.6 10.1±0.5 1.20±0.11 23.2±0.8 -28.4±3.7 

255.2±0.8 94.8±2.2 12.4±0.3 1.23±0.09 

207.9±0.2 124.7.5 11.7±0.3 1.01±0.00 

196.9±0.2 52.8±2.8 6.7±0.1 1.0a0.01 

185.4±0.2 148.2±4.9 7.9±0.2 1.24±0.02 

172.5±0.2 40.5±6.2 4.1±0.3 1.10±0.06 

d(T) 268.0±2.3 113.6±2.5 17.9±1.4 1.3a0.14 42.1±2.5 21.1±3.2 

203.7±1.3 137.41:9.9 21.8±1.3 1.19±0.09 

177.5±0.2 142.31:5.0 5.8±0.1 1.08±0.06 

g: position of the band (wavelength of at the maximum height) 
C: integrated intensity (area of the band) 
a: width at the half height of the band 
Q: skewness 
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from that of dAMP, while the positions of all other bands remain about the 

same. The second band of d(T) is the only one in our studies having a 

positive LD band (remember that the resultant LD spectrum for a nucleic acid 

is negative everywhere). Numerically, the sign of an LD band depends on a 

and x-8 angles, as can be seen from Eq. 8 in the METHODS section. The 

larger both angles are, the more likely that a transition will have a positive LD 

band. Since a and x for the d(T) base from the best fit are 42.1° and 21.1° 

(Table II), and 8 for the second band is -53° (Table I), the expression within 

brackets in Eq. 8 is positive. Detailed analyses on the relationship between LD 

and a, x-8 angles can be found in RECENT DISCOVERIES section. 

Table III lists the results for B-form poly[d(AT)-d(AT)] (decomposition not 

shown). Only the first band of d(A) and the second band of d(T) are 

significantly different from their counterparts in dAMP and TMP, respectively. If 

compared with results of poly[d(A)-d(T)] (Table II), we find that the third band 

of d(T) and all but the first band of d(A) are about the same for both polymers. 

The inclinations of d(A) and d(T) are somewhat smaller than those of 

poly[d(A)-d(T)]. 

Decompositions of B-form poly[d(G)-d(C)] (not shown) and 

poly[d(GC)-d(GC)] (Figures 9a and 9b) spectra gives very similar results in 

band parameters and a, x angles (Table IV and V), but some band parameters 

deviate from those of dGMP and dCMP. The first band of d(G) shifts -5.2 nm 

with respect to that of dGMP, and the first four bands of d(C) shift -5.3, -6.7, 

-1.7 and -3.4 nm, respectively, from those of dCMP. 

Table VI lists the results for decomposition (not shown) of the Z-form 

poly[d(GC)-d(GC)] spectra. Each band for both d(G) and d(C) resembles the 

corresponding one in B-form poly[d(G)-d(C)] and poly[d(GC)-d(GC)] (Table IV 

and V), except for a 3.9-nm difference in the position of the first band for d(G). 

Notice that we get almost the same results for d(C) for the three d(G)-d(C) 

polymers, including all of its bands and a, x angles. This may indicate that 
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Figure 9a.	 Decomposition of poly[d(GC)-d(GC)] absorption spectrum: (DOD) 
is measured, (--) is fitted, ( ) is d(G) decomposed, and ( ) 

is d(C) decomposed. 
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Figure 9b.	 Decomposition of poly[d(GC)-d(GC)] normalized LD spectrum: 
(DOD) is measured, (.) is fitted, ( ) is d(G) decomposed, and 
( ) is d(C) decomposed. 
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Table Ill. Decomposition of Poly[d(AT)-d(AT)] Absorption and LD Spectra 

Base p. (nm) Ode a (nm) p a (deg) x (deg) 

d(A) 271.3±0.4 49.6±0.5 13.6±0.1 1.19±0.03 18.6±0.6 -16.1±3.4 

256.2±0.2 89.4±0.6 14.1±0.2 1.26±0.05 

206.5±0.1 161.6±1.4 13.0±0.1 1.05±0.02 

195.7±0.0 39.6±0.6 6.a0.1 1.06±0.01 

185.5±0.0 112.7±0.3 7.4±0.0 1.07±0.01 

174.3±0.2 28.3±2.0 3.8±0.1 1.07±0.06 

d(T) 268.5±0.1 114.5±1.0 16.9±0.1 1.20±0.01 34.8±2.0 18.7±3.2 

203.7±0.7 159.6±3.8 23.9±0.4 1.41±0.02 

177.2±0.0 78.7±0.9 5.5±0.1 1.13±0.00 
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Table IV. Decomposition of B-form Poly[d(G)-d(C)] Absorption and LD 
Spectra 

Base p. (nm) Cx10-3 a (nm) p a (deg) x (deg) 

d(G) 279.7±0.1 86.a0.8 16.5±0.2 1.50±0.00 20.1±0.6 116.8±3.5 

248.3±0.1 135.7±0.6 13.5±0.1 1.00±0.00 

196.4±0.2 145.7±1.0 12.0±0.2 1.01±0.01 

179.8±0.0 234.4±1.5 10.1±0.1 1.39±0.01 

d(C) 263.6±0.1 98.4±0.4 15.1±0.2 1.15±0.01 33.8±1.0 189.8±3.8 

221.8±0.3 98.4±0.7 17.8±0.2 1.25±0.02 

211.0±0.2 40.7±1.7 9.a0.2 1.0a13.01 

193.4±0.1 124.7±1.4 10.1±0.2 1.01±0.00 

182.6±0.2 105.5±1.0 11.a0.1 1.00±0.00 
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Table V. Decomposition of B-form Poly[d(GC)-d(GC)] Absorption and LD 
Spectra 

Base g (nm) 0x103 a (nm) p a (deg) x (deg) 

d(G) 279.7±0.1 81.4±0.7 16.8±0.1 1.46±0.01 21.4±0.5 130.7±2.8 

248.7±0.1 130.1±0.4 14.11-0.1 1.0a0.01 

196.3±0.2 140.7±1.1 12.4±0.1 1.01±0.01 

180.0±0.0 232.7±0.7 10.1±0.0 1.35±0.01 

d(C) 263.7±0.1 96.1±0.4 14.7±0.1 1.10±0.01 34.0±0.7 184.0±3.2 

221.4±0.2 92.9±1.3 17.6±0.3 1.39±0.01 

209.9±0.5 35.1±1.6 9.9±0.3 1.04±0.03 

193.1±0.1 124.1±1.5 10.2±0.1 1.10±0.02 

182.7±0.1 103.1±1.2 10.7±0.1 1.09±0.02 
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Table VI. Decomposition of Z-form Poly[d(GC)-d(GC)] Absorption and LD 
Spectra 

Base ji (nm) Cx10-3 a (nm) p a (deg) x (deg) 

d(G) 283.6±0.1 96.0±1.3 16.2±0.2 1.50±0.00 27.1±1.1 137.6±3.6 

249.3±0.2 126.8±1.9 14.7±0.2 1.01±0.01 

197.9±0.6 143.3±3.0 12.6±0.2 1.04±0.04 

177.3±0.5 222.1±1.8 11.4±0.2 1.05±0.02 

d(C) 265.4±0.3 97.1±1.3 15.4±0.4 1.04±0.02 32.1±1.7 201.5±2.8 

217.9±0.4 93.6±2.6 15.9±0.3 1.19±0.06 

206.4±0.4 32.7±1.8 6.4±0.3 1.03±0.02 

193.4±0.3 115.8±2.1 9.6±0.4 1.39±0.07 

184.5±0.2 94.8±3.4 7.a0.2 1.0a0.02 
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cytosine is less sensitive to its environment or that it sees a similar 

surroundings in the three polymers. 

Decomposition of DNA Absorption and LD Spectra 

Natural DNA is typically studied in three different forms in solution. In 

aqueous solution with moderate salt (here 0.01 M Na+ as phosphate buffer, pH 

7) DNA exhibits a well-known conservative circular dichroism (CD) spectrum 

with a maximum at 275 nm and a minimum at 248 nm.5° This B-form DNA has 

10.4 bp/turn,5152 and we denote it as 10.4B-DNA. At high concentration of salt 

(here 5.5 M NH4F), in 95% methanol, or when wrapped around histone cores, 

the 275-nm band of B-form DNA collapses, and this form has 10.2 bp/turn.53 

We denote this form as 10.2B-DNA. In 80% ethanol," or here 80% 

2,2,2- trifluoroethanol,24 DNA has the nonconservative CD typical of A-form. 

The LD has been measured for all three forms,31 and we analyze these LD 

spectra here for the first time. 

Decomposition of DNA absorption and LD spectra presents another set 

of problems. First, the computer time required for each iteration is more than 

four times longer than that in fitting two-base polymers. Second, the step size 

between two iterations must be small enough so that the LM algorithm can find 

the path leading to the point of minimum variances and stay there through 

several iterations. Third, as the step size gets smaller, round-off errors 

become more significant in computing the Jacobian matrix and matrix 

inversion, resulting in meaningless variances. 

We overcome these problems to obtain the results listed in Tables VII-IX 

for decomposition of absorption and LD spectra (not shown). Differences 

among the three DNAs for each band are generally small. Inclinations for the 

B forms are about 15° for the purine and 26° for the pyrimidines. As expected 

d(A), d(T) and d(C) have larger inclinations in A form, but our results indicate 

that d(G) is unchanged from the B form. 

http:bp/turn.53
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Table VII. Decomposition of 10.4B-DNA Absorption and LD Spectra 

Base g (nm) Cx10-3 a (nm) p a (deg) x (deg) 

d(A) 271.4±0.0 24.6±0.1 14.9±0.1 1.21±0.00 16.1±0.5 46.5±4.7 

255.2±0.1 434±0.2 13.3±0.0 1.27±0.01 

206.4±0.0 73.2±0.1 12.8±0.0 1.05±0.00 

195.5±0.0 17.5±0.2 6.4±0.0 1.01±0.00 

185.5±0.0 50.8±0.1 7.4±0.0 1.09±0.01 

174.4±0.0 13.9±0.1 3.5-1-0.0 1.13±0.00 

d(T) 268.5±0.0 54.7±0.2 17.4±0.1 1.19±0.01 25.0±0.9 1.8±3.3 

204.2±0.1 70.6±0.1 23.9±0.1 1.41±0.00 

177.1±0.0 35.1±0.1 5.6±0.0 1.15±0.00 

d(G) 279.5±0.1 40.5±0.1 15.9±0.0 1.50±0.00 18.0±0.6 114.8±8.6 

248.9±0.0 61.7±0.2 13.a0.0 1.04±0.01 

196.3±0.1 63.9±0.2 12.4±0.1 1.01±0.01 

180.0±0.0 105.2±0.1 10.2±0.0 1.35±0.01 

d(C) 263.2±0.0 45.8±0.1 15.2±0.0 1.05±0.00 25.1±0.8 215.8±3.0 

222.0±0.1 42.a0.3 18.1±0.1 1.20±0.04 

209.7±0.1 15.4±0.1 9.8±0.1 1.01±0.01 

193.2+0.0 55.6±0.2 10.2±0.0 1.08±0.00 

182.5±0.0 46.6±0.1 10.9±0.0 1.11±0.00 
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Table VIII. Decomposition of 10.2B-DNA Absorption and LD Spectra 

Base p. (nm) tx10-3 a (nm) p a (deg) x (deg) 

d(A) 271.7±0.1 23.9±0.2 14.4±0.1 1.23±0.01 14.9±0.6 96.6±3.7 

255.1±0.0 42.6±0.1 13.2±0.1 1.18±0.01 

206.7±0.1 68.8±0.2 13.1±0.1 1.01±0.01 

194.9±0.0 16.4±0.1 6.7±0.1 1.01±0.00 

185.4±0.1 45.8±0.2 8.1±0.1 1.01±0.01 

174.1±0.1 11.7±0.5 3.6±0.1 1.15±0.04 

d(T) 268.3±0.2 53.6±0.4 17.8±0.2 1.09±0.01 28.1±1.3 31.9±3.0 

204.7±0.4 66.1±0.5 23.3±0.2 1.41±0.03 

177.1±0.0 34.5±0.6 5.2±0.1 1.12±0.01 

d(G) 279.5±0.1 38.9±0.2 16.0±0.1 1.50±0.00 13.9±1.7 142.5±4.2 

248.8±0.1 58.6±0.2 13.4±0.1 1.08±0.01 

196.5±0.1 59.5±0.1 12.a0.1 1.01±0.01 

179.7±0.0 96.1±0.2 10.5±0.0 1.27±0.00 

d(C) 263.5±0.1 43.7±0.2 15.4±0.1 1.07±0.01 27.7±0.7 201.2±2.5 

221.5±0.1 40.4±0.1 17.3±0.1 1.18±0.02 

210.a0.2 14.9±0.1 11.9±0.3 1.09±0.03 

193.9±0.1 51.2±0.3 10.6±0.1 1.01±0.01 

182.a0.1 42.1±0.3 11.5±0.1 1.02±0.01 
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Table IX. Decomposition of A-form DNA Absorption and LD Spectra 

Base p. (nm) Cx10'3 a (nm) p a (deg) x (deg) 

d(A) 270.3±0.2 25.8±0.7 16.9±0.7 1.13±0.01 27.8±1.0 7.0±1.3 

256.1±0.1 44.7±0.4 14.1±0.1 1.34±0.01 

206.9±0.1 76.1±0.2 12.5±0.1 1.00±0.00 

196.0±0.1 18.4±0.4 6.3±0.1 1.01±0.01 

185.4±0.0 50.0±0.3 7.4±0.0 1.13±0.01 

174.0±0.0 11.3±0.2 3.5±0.0 1.18±0.01 

d(T) 268.6±0.1 56.8±0.6 17.0±0.1 1.16±0.01 34.7±0.9 -5.4±1.4 

206.6±0.1 75.9±0.3 23.a0.1 1.21±0.01 

176.9±0.0 34.3±0.3 5.5±0.0 1.23±0.01 

d(G) 280.0±0.1 42.3±0.4 16.3±0.1 1.50±0.00 14.3±1.0 95.3±6.7 

248.9±0.1 61.7±0.4 14.6±0.1 1.06±0.01 

196.8±0.1 65.2±0.5 12.0±0.1 1.04±0.02 

179.9±0.1 103.7±0.4 10.3±0.0 1.36±0.01 

d(C) 263.4±0.1 47.7±0.2 14.7±0.0 1.06±0.01 35.a0.5 216.1±1.4 

219.9±0.4 49.6±0.6 14.7±0.3 1.1a0.08 

209.9±0.2 18.6±0.2 8.4±0.1 1.01±0.01 

193.5±0.1 54.6±0.5 11.2±0.2 1.01±0.01 

182.4±0.1 45.1±0.2 11.3±0.1 1.07±0.01 
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Comparison to Previous Results 

Angle a for the five synthetic polymers are similar to those calculated 

previously in our laboratory from the same data32.33 Differences in the 

inclination axis, x, are not surprising as this parameter is not particularly 

sensitive to the data (see RECENT DISCOVERIES section). The new 

inclination angles, a, result in the same message: base pairs are inclined, even 

in the B form. 

One factor that is responsible for any differences between this analysis 

and previous analyses is the different optimization algorithm. Although the 

advantage of simplex method used previously is that one can tell local ssq 

(sum of squares error) minima from the global minimum "by running the 

program several times",32 the scale of the problem actually turns the advantage 

into a disadvantage, because the "several times" could mean an infinite 

number of times to assure the global minimum of ssq is found. Two other 

disadvantages in using the simplex algorithm are that (1) there is no correlation 

term defined for any two variables, and (2) the algorithm uses only ssq, and 

not individual squared errors. The LM algorithm used in this study has none of 

these drawbacks. 

Furthermore, transition dipole directions are different, especially for the 

base adenine, which also has a different number of transitions. A skewness 

parameter is added to define the shape of an absorption band. Previous 

calculations aimed to fit one reduced LD spectrum (Eq. 1 in INTRODUCTION 

section), while this work fits absorption and LD spectra simultaneously. 

Previously, the position of a band for a given base is fixed for all polymers 

containing that base, but the position is variable now. Because every change 

we made departing from the previous study is an improvement, the current 

results should be more reliable and stable. 

http:data32.33
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Repeated Fittings with Randomized Transition Dipole Directions 

Two types of error can affect the results of spectral decomposition: the 

error in measuring absorption and LD spectra, and the error in determining 

transition dipole directions. The effects of the first type of error were minimized 

by using stability of the band parameters as the criterion for fitting the data. 

The effects of the second type of error can be studied through the Monte Carlo 

method. The direction of a transition dipole in a given base may not 

necessarily be the same for the monomer and a polymer containing the base. 

Thus, we repeated each of the fittings 100 times with each transition dipole 

direction randomly perturbed by a value sampled from an uniform distribution in 

the range ±10°. Averages and standard deviations are calculated from the 100 

independently fitted results for each variable, and these are the results 

presented in Tables II-IX. The a and x angles show no dependence on either 

ABS.ssq or LD.ssq, indicating that they are very stable around our chosen 

solution and are fairly insensitive to the ±10° variation in the transition dipole 

directions used to obtain these a and x angles. Figures 10a and 10b 

illustrated the distributions of a and x angles, respectively, of the four different 

bases resulting from 100 repeated fittings for 10.4B-DNA absorption and LD 

spectra. 

In Tables II-IX, relatively large standard deviations for band parameters 

often occur at bands sitting near the ends of a spectrum, and for the second 

band of d(T). Standard deviations of x angles in each table are always greater 

than those of a angles, especially for the three DNAs. The difference in 

stability between fitted a and x angles was also observed in earlier studies, but 

its physical meaning was not clear until very recently. The explanation for this 

phenomenon is presented in the section RECENT DISCOVERIES. 
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Figure 10a. Distributions of inclination angles a for d(A) (0), d(T) (I), d(G) (*) 
and d(C) () from 100 repeated fittings of 10.4B-DNA absorption 
and LD spectra. In each repeated fitting, all transition dipole 
directions are each perturbed with a random number drawn from 
an uniform distribution in the range of ±10°. 



4.63 4.67 4.171 4.75 4.'79 4.83 

Log of LD.ssq 
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Figure 10b. Distributions of inclination axes x for d(A) (0), d(T) (I), d(G) (*) 
and d(C) () from 100 repeated fittings of 10.4B-DNA absorption 
and LD spectra. In each repeated fitting, all transition dipole 
directions are each perturbed with a random number drawn from 
an uniform distribution in the range of ±10°. 



4.67 4.71	 4.75 

Log of LD.ssq 
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Building a Base-Pair Model 

Table X lists parameters for the four base pairs built from a and x 

angles determined for d(A) and d(T) in each of the two synthetic polymers and 

three DNAs. When building a base pair, positions and orientations of the two 

paired bases are adjusted so that the two hydrogen-bond lengths are between 

2.80 and 3.00 A, and hydrogen-bond angles (A.C6-A.N6-T.04 and 

T.C4-T.N3-A.N1) are close to 120°. For each resulting base pair the propeller 

twist, the distance between the two C1' atoms and the distance between A.C8 

and T.C6 are determined. Because the imposed restrictions are not very tight 

in this procedure, for each base pair we can actually derive a number of 

possible conformations, each with slightly different values of the parameters. 

Thus the results presented in Table X are not unique, nor necessary the best, 

but simply possible. 

One interesting feature regarding the uncertainty in the sign of a angles 

is that only poly[d(A)-d(T)] has a propeller twist in +/- or 4+ smaller than that in 

+/+ or -/-. It is independent of how the base pair is built, because of the large 

a angle for d(T). Another feature is that all four possible propeller twist angles 

for 10.4B-DNA are about the same as those of 10.2B-DNA, although the x 

angles of d(A) and d(T) for 10.4B-DNA are significantly different from those for 

10.2B-DNA. Equally strikingly is the fact that all parameters for the +/+ and -/­

variations of 10.4B-DNA are virtually the same as their counterparts in 

10.2B-DNA. From the two hydrogen-bond angles, the +1+ and -/- pairs in both 

B-form DNAs are considered more acceptable than the +/- and -1+ pairs. The 

+/+ and -/- pairs of A-form DNA are also our choices, because their A.C11-T.C1' 

and A.C8-T.C6 distances are more realistic than those of the +/- and -/+ pairs. 

In general, conformations with a smaller propeller twist for the AT pair have 

more favorable base-pair parameters, and these are found in the +1+ and -/­

pairs for all but poly[d(A)-d(T)]. 

The GC base pairs were built for the three d(G)-d(C) polymers and three 

DNAs, and the parameters are listed in Table Xl.a and Xl.b. Among the four 

http:A.C8-T.C6
http:A.C11-T.C1
http:T.C4-T.N3-A.N1
http:A.C6-A.N6-T.04
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Table X. AT Base-Pair Parameters 

Sign of Hydrogen Bond Propeller A.C1' A.C8 

A/T pair A.N8--T.04 A.N1---T.N3 
(deg) T.C,' T.C6 

Length Angle Length Angle (A) (A) 
(A) (deg) (A) (deg) 

poly +1+ 2.80 102 3.00 94 53 10.84 9.67 
[d(A) 
-dln] +/­ 2.80 112 3.00 123 40 10.18 8.99 

-1+ 2.80 110 2.91 121 40 10.44 9.22 

-/­ 2.80 105 3.00 95 53 10.73 9.47 

poly +1+ 2.81 110 3.00 103 40 10.82 9.75 
[d(AT) 
-d(AT)] +/­ 2.80 114 3.00 120 38 10.38 9.26 

-I+ 2.84 111 2.90 121 38 10.43 9.30 

-/­ 2.80 113 3.00 103 40 10.74 9.81 

10.4B­ +1+ 2.92 123 3.00 121 10 10.82 9.88 
DNA 

+/­ 3.00 109 2.95 121 41 10.29 9.37 

-1+ 3.00 108 2.91 119 41 10.44 9.46 

-/­ 2.87 124 3.00 121 10 10.78 9.86 

10.2B­ +1+ 2.94 122 3.00 122 13 10.84 9.86 
DNA 

+/­ 3.00 107 2.81 115 43 10.71 9.72 

-1+ 3.00 106 2.92 110 43 10.91 9.76 

-/­ 2.85 123 3.00 120 13 10.80 9.84 

A-form +1+ 3.00 114 2.80 120 25 10.57 9.74 
DNA 

+/­ 2.80 109 3.00 123 58 9.27 8.39 

-1+ 2.80 107 2.97 123 57 9.66 8.61 

-/­ 3.00 115 2.80 121 25 10.48 9.76 
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Table Xl.a. G/C Base-Pair Parameters 

Sign of Hydrogen Bond 
a for 
G/C pair G.06---C.N4 G.N1---C.N3 G.N2---C.02 

Length Angle Length Angle Length Angle 
(A) (deg) (A) (deg) (A) (deg) 

B-form +/+ 3.00 112 2.80 113 3.37 109 
PolY 
[d(G) +/­ 2.80 122 3.00 116 2.83 126 

-d(C)] -1+ 2.80 118 3.00 114 3.13 124 

-/­ 3.00 114 2.80 115 3.10 113 

B-form +/+ 3.00 111 2.80 112 3.30 108 
PolY 
[d(GC) +/­ 2.80 119 3.00 115 2.80 124 

-d(GC)] -1+ 2.80 113 2.81 115 2.80 124 

-I­ 3.00 113 2.80 115 3.03 111 

Z-form +/+ 3.00 106 2.80 108 3.70 98 
Poly 
[d(GC) +/­ 2.80 120 2.98 113 2.80 123 

-d(GC)] -1+ 2.80 115 2.82 114 2.80 123 

-/­ 3.00 107 2.80 110 3.54 102 

10.4B­ +/+ 3.00 108 2.80 110 3.31 106 
DNA 

+/­ 2.80 119 2.93 113 2.80 123 

-1+ 2.80 118 2.92 112 2.91 121 

-/­ 3.00 108 2.80 111 3.17 110 

10.2B­ +1+ 3.00 112 2.80 113 3.07 110 
DNA 

+/­ 2.80 121 2.95 114 2.80 124 

-1+ 2.80 117 2.82 114 2.80 123 

-/­ 2.91 114 2.80 114 3.00 113 

A-form +1+ 3.00 112 2.80 115 3.48 109 
DNA 

+/­ 2.80 123 2.84 119 2.80 125 

-1+ 2.80 122 2.83 118 2.91 122 

-/- 3.00 111 2.80 115 3.32 113 
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Table Xl.b. G/C Base-Pair Parameters 

Sign of Propeller G.C1' G.C8 
a for twist 
G/C pair (deg) C.C,' C.C6 

(A) (A) 

B-form +/+ 49 10.55 9.70 
PolY 
[d(G) +/­ 27 10.61 9.80 

-d(C)] -1+ 25 10.74 9.81 

-/­ 48 10.42 9.71 

B-form +1+ 45 10.44 9.70 
Poll, 
[d(GC) +/­ 34 10.48 9.67 

-d(GC)] -1+ 34 10.28 9.53 

-/­ 44 10.29 9.70 

Z-form +/+ 52 10.71 9.74 
Poly 
[d(GC) +/­ 31 10.53 9.73 

-d(GC)] -1+ 31 10.35 9.61 

-/­ 52 10.63 9.75 

10.4B­ +/+ 43 10.71 9.77 
DNA 

+/­ 11 10.67 9.89 

-1+ 10 10.71 9.89 

-/­ 43 10.66 9.77 

10.2B­ +1+ 35 10.47 9.80 
DNA 

+/­ 26 10.61 9.82 

-1+ 26 10.46 9.72 

-/­ 36 10.48 9.79 

A-form +A­ 49 10.84 9.76 
DNA 

+/­ 21 10.58 9.86 

-/+ 21 10.62 9.86 

-/- 49 10.80 9.76 
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sign possibilities for each base pair, there are always two (+/+ and -/-) that 

have the three hydrogen-bond lengths beyond the 2.8-3.0 A range, primarily 

due to their large propeller twists. Since the amino group of d(G) rotates within 

the closed base pair,54 we allowed the hydrogen-bond length of G.N2-C.02 to 

be a larger value and adjusted the other two within the range of 2.8-3.0 A. In 

all cases, the smaller propeller twist is also accompanied by better 

hydrogen-bond angles (C.C4-C.N4-G.06, G.C6-G.N1-C. N3, and G.C2-G.N2-C.02). 

The A.C1'-T.C,' and A.C8-T.C6 distances appear to be irregular for all four pairs 

and, thus, are of no help in determining which conformation is better. 

One Step Further for Poly[d(A)-d(T)] 

Even though base pairs can be built from the calculated a and x angles 

for poly[d(A)-d(T)], the a angle of 42.1° for d(T) is rather large. Supporting 

evidence comes from the structure of poly[d(A)-d(T)] in the B-form, which has a 

large propeller twist so that an extra hydrogen bond forms between A.N6 of one 

base pair and 1.04 of the next pair.° To verify the existence of this cross-pair 

hydrogen bond in a B-form structure, we need to define some parameters. In 

our coordinate system, a standard B-form helix of DNA will have its helical axis 

at x = 0.86 and y = 2.40 A. The rise, dz, is 3.38 A, and the rotational angle 

along the helical axis between two base pairs is +36°. Adding the twist and tilt 

from this work and then generating the second pair through rotation define a 

new helix axis displaced dx = +0.0 and dy = +0.3 A. 

Now, for each of the four possible AT pairs, namely, +/+, +/-, 4+, and 

-/-, we put a second pair (A2-T2) on top of the first one (Al-T1) according to 

the above parameters and calculate the length (Al .N6-T2.04) and angle 

(Al .C6-Al.N6-T2.04) of this special hydrogen bond. The results listed in Table 

XII show that there indeed exists a hydrogen bond of length 2.87 A and angle 

118° between Al .C6 and T2.04 atoms if the paired sign of a angles is -/-, and 

the bond distance is actually the shortest distance among any two atoms 

http:A.C8-T.C6
http:G.C2-G.N2-C.02
http:C.C4-C.N4-G.06
http:G.N2-C.02
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Table XII. Cross-Pair Hydrogen Bond of poly[d(A)-d(T)] 

Sign Al.fsteT2.04 
of a 

Length Angle 
(A) (deg) 

+/+ 5.15 90 

+/- 1.63 101 

-/+ 5.42 105 

-/- 2.87 118 

http:Al.fsteT2.04
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between bases of Al-A2, Al-T2, A2-T1 and T1-T2. For +/+, +1- and -/+ pairs, 

the hydrogen bond can barely form, and some atomic contact distances are 

too small to be acceptable. However, as have been stressed earlier, we have 

more degrees of freedom than required to determine a possible structure, and 

the results presented here should not be taken as unique. In the case of 

finding this cross-pair hydrogen bond, we tried only the smallest and most 

reasonable dx and dy that can give results satisfying our conditions, and the -I­

pair appeared to be the one of choice. 

We conclude that the large a angle for d(T), as well as the large 

propeller twist between d(A) and d(T), is possible, and the overall picture may 

be considered as the actual conformation of poly[d(A)-d(T)] in solution. 
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RECENT DISCOVERIES 

We have described two interesting observations in the RESULTS and 

DISCUSSION section: (1) that the second LD band of d(T) for poly[d(A)-d(T)] is 

positive, and (2) that for all of the polymers examined in this study the 

uncertainty in the fitted x angles is always larger than that of a angles for the 

same base. Now we present our very recent discoveries that will explain both 

observations. 

First, we combine Eq. 1 and Eq. 8 and express the reduced linear 

dichroism for a transition dipole i of base j as follows: 

Lii = 1
2 

[ 3 sin2ai sin2 (Xi -8ii ) -11 
Eq. 9 

where we take S = 1 for this illustration. We will omit the subscript i and j for 

clarity through this section, but one must not forget that for each base j, there 

are several dipoles i. 

Depending on the three angles in this expression, the value for L can 

range from -1.5 to 3.0. Two configurations will render L equal to -1.5: (1) a = 

0°, the base is perpendicular to the helical axis, and the direction of the 

transition dipole makes no difference (that is, the x-S term in Eq. 9 has no 

effect), and (2) rs = 0°, the transition dipole falls in the inclination axis which 

in turn is defined to be perpendicular to the helix axis, and so it does not 

matter what the magnitude of the inclination angle is. For L to be 3.0 it is 

necessary that both a and rs are 90°. The molecular configuration in this 

case would be that the base is parallel to the helical axis (which is very unlikely 

to happen) and the transition dipole is perpendicular to the inclination axis and 

hence also parallel to the helical axis. 

In order to infer molecular configurations for L values other than the two 
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extremes, we plotted the L in gray shadings representing its values for a in the 

range of [0°,901 in one dimension and x-8 in the range of [-900,900] in the 

other dimension (Figure 11). This plot immediately suggests that: (1) L is more 

likely to be positive with larger a and Ix-81 angles, and (2) L is less sensitive to 

x-8 with smaller a angles. We will explore these two points in more detail 

below. 

Figure 12 visualizes why the second band of d(T) in poly[d(A)-d(T)] has 

a positive LD. The vertical line indicates the a value of d(T), which is 42.1° 

(Table II), and the three horizontal lines are x-8 values (30.1°, 74.1° and 47.1° 

respectively) for the angles of three transition dipoles of d(T). The shaded 

areas at the intersections give the L values for the three bands. It is clear that 

with the large a angle and the large x-8 value (74.1°), the L for the second 

band extends well into the positive shaded areas in Figure 12. The message 

here is that although the measured total LD spectra are always negative, one 

must not assume all individual LD bands are negative. Indeed, a simple 

calculation from Eq. 9 reveals that positive LD bands may exist and partially 

cancel the negative LD spectra if a base inclined more than 35.3°. 

Figure 11 also explains why fitted x angles have a larger standard 

deviation than a angles. At a = 15°, we see that gray-shade boundaries are 

crossed only a few times from the bottom of the box to the top. What this 

means is that very different x-8 angles can give similar L values when a is 

small. On the other hand, for x-8 = -75° across the box, we see that L 

changes more rapidly. Although L becomes more sensitive to x-8 as a 

approaches 90° and less sensitive to a when x-8 approaches 0°, most a 

angles are small (less than 35°) and x-8 angles spread over the range of 

[- 90 °,90 °] in this study, so it is inevitable for x angles to have larger standard 

deviations than a angles. 
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Figure 11.	 Reduced linear dichroism, L, plotted as a function of inclination 
angle a and x-8 angle, where x is inclination axis and 8 is 
transition dipole direction. L values in the graph box are 
presented as different level of gray shadings. The mapping from 
L's to shadings is shown at the right column. 
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Figure 12.	 Graphical explanation of positive LD bands and insensitivity of x 
to the LD data. The inclination angle a and the three x-8 angles 
for d(T) of poly[d(A)-d(T)] are shown as a vertical line (a = 42°) 
and horizontal lines (x-8 = 30°, 74° and 47° for the 268.0, 203.7 
and 177.5 nm bands), respectively. The shaded areas at the 
intersections give the L values for the three bands. 
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SECTION III
 

Conclusion
 

The study presented in SECTION II, that is, determination of DNA base 

inclinations, has it own significance in the field of DNA structure research. 

More importantly, this section of the thesis serves to illustrate how a 

comprehensive analysis can be achieved, and demonstrates that such an 

analysis is vital for a well designed experiment. In summary: 

1. The analysis yield DNA base inclinations is a case study. Many 

other experiments with precious information buried in their measurements are 

still waiting for a conclusive analysis like this one. 

2. Time is an important factor. Computer technology advances with 

time. Chemical and physical parameters of interest emerge with time. 

Mathematical and numerical methods evolve with time. These factors are 

certain to contribute new ideas to experimental designs. 

3. The ability to develop in-house computer programs for data analysis 

in biochemistry and biophysics research should be recognized as an alternative 

to the ability to do on-the-bench experiments. 

4. The combined power of computer hardware and software is not 

limited to data analysis. Simulation of molecular dynamics on computers has 

been done for years, and it is my personal belief that it will not be long before 

entire experiments (sample preparations, instrument, and measurements) will 

be simulated completely on computers. 



APPENDIX
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Overview of the ABS-LD and PARSE-R Programs 

Two computer programs are used in this study. One is the fitting 

program ABS-LD and the other is PARSE-R, an auxiliary program for data 

conversion. The usage of ABS-LD is described in detail under the subtitles 

Command Line Arguments for ABS-LD Program and Iteration Controls in 

ABS-LD Program. The usage of PARSE-R is described under the subtitle 

Command Line Arguments for PARSE-R Program. The program source 

code for ABS-LD is given in Lists 1-5, and for PARSE-R in List 6. Both 

programs are written in C language. 

The program ABS-LD is logically divided into 5 parts in the following 

short descriptions and in the lists for the purpose of clarity only; they should be 

concatenated in the presented order into a single program and compiled 

together. 

Standard header files are listed in List 1. These files contain the 

function prototype and constant declarations used in the rest of the program. 

List 2 is a modified version of the LU decomposition presented in the 

book Numerical Recipes in C.57 LU decomposition is a commonly used 

technique to perform matrix inversion and solve linear equations. It is used in 

this program to invert the positive definite symmetry matrix generated by the 

Levenberg-Marquardt algorithm (Eq. 7 in METHODS section). Two additional 

functions are added to handle memory allocation and deallocation. 

List 3 is our implementation of the Levenberg-Marquardt algorithm.39 The 

main algorithm is implemented in the function marquardt(); the calculation of 

standard deviations for all variables is done in marquardt_stdvo. The 

remaining two functions are for memory management. 

List 4 contains supporting functions. These are subroutines to perform 

input, output, band-shape calculation, spectra normalization and 

communication with the marquardt() function, plus some data structure 

http:algorithm.39
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definitions. 

List 5 is the main() function, the program entry point in C language. 

The behavior and response of the program are controllable through several 

run-time parameters and options provided in this function. 

The program PARSE-R is used to convert the results of repeated fittings 

from ABS-LD to a format acceptable by spreadsheet programs. Most 

spreadsheet programs can not import a line of length longer than 256 

characters, and each line of output from ABS-LD for repeated fittings is always 

longer than that. Hence the need of this program. 

PARSE-R is listed in List 6. 

Command Line Arguments for the ABS-LD Program 

To run the program, type ABS-LD followed by your filename for the 

PEAK, SPECTRUM and OUTPUT files. For example, under the DOS 

operating system on a PC, type ABS -LD P-CMP.11 DCMP.ABS -CMP11.1 

and hit <Return>. Here P-CMP.11 is a PEAK file, DCMP.ABS is a 

SPECTRUM file, and 0-CMP11.1 is an OUTPUT file. Their formats are 

described below. The program expects exactly three command line arguments 

like this, otherwise it will print the message 

need PEAK, SPECTRUM and OUTPUT files and terminate immediately. If, 

for example, the program can't find or open the file P-CMP.11, which was 

entered as the PEAK file, the program will print the message 

can't open PEAK file: P-CMP.11 and terminate immediately. The same 

error checking is applied to the SPECTRUM and RESTRICTION files. The 

RESTRICTION file is described in conjunction with the PEAK file below. 

http:P-CMP.11
http:P-CMP.11
http:P-CMP.11
http:P-CMP.11
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The PEAK File Format 

All numerical fields in the PEAK file must be separated by at least one 

<Space> character or separated into different lines. Do not use <Comma> 

character to separate fields. The first integer number in the PEAK file is the 

number of bases involved in this fitting. If the number of bases is 1, the 

program assumes we are fitting an absorption spectrum only. If the number of 

bases is greater than 1, the program fits an absorption spectrum, and an LD 

spectrum using a and x angles for each base. This means that if you want to 

fit both absorption and LD for a polymer with a single base, you must set the 

number of bases to 2, and repeat the data for the base. In all cases, the 

program reads an integer number as the number of transition dipoles for each 

base, and then reads five real numbers in a row as the initial guesses for 

position, intensity, width, and skewness, and the dipole direction for each band. 

This input process repeats for each band of a base and each base in the 

PEAK file. 

Example P-GMP.1 illustrates the PEAK file for one base and an 

absorption-only fit. 

Example P-GMP.1 

1
 

4
 

272.5 420100 22.8 1.50 -4
 
248.7 223400 12.5 1.01 -75
 
197.8 537500 13.3 1.24 -71
 
183.5 341600 11.6 1.50 41
 

from Table 1 of old paper
 
fix rho of the 1st and 4th band at 1.50 (originally 1.94 and 1.55)
 
restriction file: R-GMP.2
 

Note that the line starting "from Table ..." and there after are comments. 

The program will close the PEAK file immediately after all required data are 

read so the comments are effectively ignored. Comments can serve to 

indicate how this PEAK file is composed. The transition dipole directions are 
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not used by the program for decomposition of a monomer absorption spectrum. 

After reading the data, the program then prompts you to enter the 

filename for a RESTRICTION file with the message restriction file: . The 

program use the information in the RESTRICTION file to identify if any band 

parameters are to be fixed at the values given in PEAK file, and not subject to 

the fitting. As shown in Example R-GMP.1, the RESTRICTION file for 

Example P-GMP.1, the skewness of the first and fourth bands are to be fixed. 

A RESTRICTION file contains as many lines as the number of bands of the 

corresponding PEAK file. Each line has four numbers (for band position, 

intensity, width, and skewness) of either 0 or 1 indicating a parameter is to be 

fixed or fitted, respectively. 

Example R-GMP.2 

1 1 1 0 
1 1 1 1 
1 1 1 1 
1 1 1 0 

When the number of bases is not 1 (the first integer in the PEAK file), 

the program will read two additional real numbers as the a and x angles (in 

degrees) immediately after the integer for the number of dipoles for each base, 

as shown in Example P-ZGCGC.3. 
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Example P-ZGCGC.3 

2
 

4 26.64 137.30
 
283.77 96882 16.47 1.500 -4
 
249.20 126800 14.72 1.018 -75
 
197.99 142769 12.72 1.023 -71
 
177.56 220647 11.44 1.066 41
 
5 31.94 202.16
 
265.46 97272 15.41 1.035 6
 

218.17 92848 15.89 1.238 -35
 
206.16 33702 6.13 1.088 76
 
193.44 116471 9.59 1.448 86
 
184.52 94241 7.20 1.035 0
 

taken from ZGCGC2.1 at the 39th iterations
 
fix rho of G1 at 1.5 with restriction file R-GC.2
 

Example R-GC.2 

1 1
 
1 1 1 0
 
1 1 1 1
 
1 1 1 1
 
1 1 1 1
 
1 1
 
1 1 1 1
 
1 1 1 1
 
1 1 1 1
 
1 1 1 1
 
1 1 1 1
 

To match the data in Example P-ZGCGC.3, two integers (1 1) are 

added for each base in Example R-GC.2 to indicate that a and x angles for 

both bases are to be fitted. 

The following example is a PEAK file for fitting the absorption and LD 

spectra for natural DNA with four bases. There is no RESTRICTION file. 

When the program asks for the filename of the RESTRICTION file in this case, 

simply hit the <Return> key and the program will assume there is no 

RESTRICTION file and all variables (band parameters and a and x angles) are 

subject to fitting. 
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Example P-ZDNA.1 

4 

6 24.52 6.67 
270.85 50135 13.41 1.151 83 
256.06 90265 14.45 1.306 25 
206.39 161589 12.82 1.065 -45 
195.62 39315 6.15 1.068 15 
185.43 112444 7.39 1.067 72 
174.32 28857 3.92 1.054 -45 
3 33.70 -6.87 
268.40 115561 17.01 1.191 -9 
203.99 157246 23.67 1.416 -53 
177.19 78019 5.59 1.131 -26 
4 13.57 81.34 
279.71 82034 16.84 1.454 -4 
248.68 130043 14.03 1.017 -75 
196.31 141293 12.35 1.007 -71 
180.02 233621 10.11 1.365 41 
5 35.73 216.72 
263.75 96001 14.71 1.111 6 

221.40 93564 17.43 1.394 -35 
209.89 34261 9.72 1.020 76 
193.07 123689 10.11 1.095 86 
182.53 104113 10.84 1.085 0 

taken from P-ATAT.2 and P-GCGC.2
 

The SPECTRUM File Format 

The second argument to the program ABS-LD is your filename for the 

SPECTRUM file. The first two integers in a SPECTRUM file are the starting 

and ending wavelengths for the data that follows, with the shorter wavelength 

first and 1-nm interval assumed. If the number of bases (determined from 

PEAK file) is 1, then there is only one column of data representing the 

absorption spectrum. If the number of bases is not 1, then there are two 

columns of data; the first column is the absorption spectrum, and the second 

one is the LD spectrum. Partial lists of the SPECTRUM files for DAMP 

absorption spectrum and 10.4B-DNA absorption and LD spectra are shown in 

the following examples. Note that the LD spectrum in Example 

104B-DNA.ALD has been normalized to the same area as the absorption 

spectrum. All numerical fields in the SPECTRUM file must be separated by at 
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least one <Space> character or into different lines. Do not use the <Comma> 

character to separate fields. 

Example DAMP.ABS 

176 288
 
14111.12
 
14444.44
 
15000.00
 
15777.78
 
16444.44
 
17555.56
 
...
 

Example 1 04B-DNA.ALD 

177 300
 
13593.12463 13131.12435
 
13874.21217 13445.10512
 
14076.05695 13674.61011
 
14182.95993 13852.53255
 
14316.77554 14027.46469
 
14391.53287 14115.67834
 

The OUTPUT File Format 

The third argument to the program ABS-LD is the filename of your 

OUTPUT file. All data generated during the program execution will be written 

to this file (see below for exceptions). In the following example, Example 

0-AT2.1, three lines of header are followed by the results of the first iteration 

of this fitting. 

http:17555.56
http:16444.44
http:15777.78
http:15000.00
http:14444.44
http:14111.12
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Example O -AT2.1 

D:\DNA\ABS-LD.EXE P-AT.2 AT.ABS 0-AT2.1
 

256 2 le+010 3000000 0 (7) [1] M=256 N=40 <0.25>
 

orientation ABS/LD = 1.000000e+000
 

40 2.560000e+002 9.069433e+004 2.947606e+007
 
IAnormal=1.000616, IAssq=1.272848e+007
 
LDnorma1=-1.931784, LDssq=1.665688e+007
 

275.70 ( 18.62) 29182 (265487) 11.25 (24.60) 1.205 (1.621) 1.0573
 
254.59 ( 9.08) 100065 (377289) 13.86 (10.72) 1.332 (0.654) 1.3734
 
208.44 ( 1.44) 126690 (123047) 10.50 ( 2.57) 1.205 (0.415) 1.8150
 
197.27 ( 1.77) 52040 ( 50102) 6.12 ( 2.54) 1.379 (0.642) 1.5405
 
185.69 ( 5.68) 151272 (219676) 7.57 ( 8.24) 1.292 (1.185) 0.9820
 
172.53 (142.03) 42533 (1800813) 4.49 (118.66) 1.002 (16.987) 1.8150
 

24.05 ( 15.34) -24.61 ( 35.97)
 

268.16 ( 45.42) 117889 (395540) 18.00 (37.73) 1.253 (1.128) 1.2995
 
206.43 ( 7.15) 129761 (158944) 19.69 (31.78) 1.499 (1.943) -0.3294
 
178.26 ( 3.18) 131475 (250814) 5.80 ( 4.02) 1.420 (0.616) 0.6034
 

40.37 ( 32.87) 21.66 ( 48.78)
 

The first line of the header is printed as a reflection of the command 

line, which started the program execution. The second line contains various 

control and status values for this fitting: 

256 LMcoef
 
2 LMstep
 
le+010 LMlimit
 
3000000 SSQlimit
 
0 SSQpercent
 
(7) option 
[1] weight of ABS.ssq over LD.ssq
 
M=256 the number of data points
 
N=40 the number of variables
 
<0.25> partial derivative control 

The number of data points is all the data points being fitted; here both 

the absorption and LD spectra are being fitted simultaneously. If the fitting is 

for the monomer absorption spectrum only, then it will be equal to the number 

of data points of the absorption spectrum. The number of variables is the sum 

of the number of band parameters for all bands plus 2 (for a and x) for each 

base, minus the number of variables to be fixed as specified in the 

RESTRICTION file. The meaning of all other values in the second header line 
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will be described in detail later. 

The third line of the header is the scale factor calculated by the program 

to normalize the LD spectrum to the same area as the absorption spectrum. 

The program always normalizes the LD spectrum after the SPECTRUM file is 

read, and uses the normalized version of the LD spectrum for the fitting. Since 

the LD spectrum in the SPECTRUM file AT.ABS has already been normalized 

and its sign reversed, this number is 1.00. 

At the end of each iteration, the program will generate a block of results 

similar to the one in the rest of Example 0-AT2.1 after the header. The 

meaning of each value in the first three lines of results are: 

40 the number of active variables 
2.560000e+002 current LMcoef 
9.069433e+004 decrease of total ssq by this iteration 
2.947606e+007 total ssq (ABS.ssq + LD.ssq) after this iteration 
1.000616 should be close to 1 
1.272848e+007 ABS.ssq after this iteration 
-1.931784 normalization factor 
1.665688e+007 LD.ssq after this iteration 

The number of active variables will be smaller than the number of 

variables shown in the second line of header if, during this iteration, any of the 

variables have no effect on the fitting and are excluded by the program. 

Theoretically, this means these variables have reached their optimal values 

and the first partial derivatives of the minimization function with respect to 

these variables are zero. But in practice, this always means these variables 

have either very large or very small values, such that they no longer have any 

effect on the fitting. A typical example is that the position of a band shifts to 

500 nm. 

The current LMcoef will be explained later. The normalization factor is 

the scale factor that normalizes the calculated LD spectrum to the absorption 

spectrum. If the LD spectrum in the SPECTRUM file has not been normalized 

(that is, the original measured LD spectrum), then the alignment factor S in Eq. 

8 can be calculated by dividing this normalization factor by the orientation 



91 

factor in the third line of the header. 

Next in the results are, for each base, fitted values for band position, 

intensity, width, and skewness for all bands, and may be followed by a and x 

angles if the LD spectrum is also fitted as in this example. The number in 

each parentheses is the square root of the diagonal element of the matrix 

[J(x):1(x)]-1, corresponding to the variable immediately preceding the 

parentheses. See the heading Nonlinear Linear Square Fitting in METHODS 

section for the meaning of these numbers. The last number in each line of 

band parameters is the scale factor that, when it is multiplied by the absorption 

band, gives the corresponding LD band. So, for example, this factor for the 

second band of d(T) in Example 0-AT2.1 is -0.3294, and that means the LD 

band has changed sign and is 0.3294 the height of the corresponding 

absorption band. 

Iteration Controls in the ABS-LD Program 

After the data in the PEAK and SPECTRUM files are read, the program 

then asks values for the following controls on the screen, 

eps, Lmcoef, Lmstep, LMlimit, SSQlimit, SSQpercent, SSQiand, option:
 

and they are entered from the keyboard, with at least one <Space> character 

separating two values. 

eps 

The eps is used by the Levenberg-Marquardt algorithm to compute h = 

es, and h is the infinitesimal used to approximate the first partial derivatives of 

the minimization function with respect to all variables (heading Nonlinear 

Least Squares Fitting in METHODS section). The u is the unit-round of a 

double precision floating-point number of the host machine on which the 

program is executing, so its value may vary from system to system, but it is 
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always predefined in the C language header file <float.h> as the constant 

DBL_EPSILON. According to the IEEE 754 standard, a double precision 

floating-point number (which is the data type used in this program for fitting) 

will have its unit-round close to 2x10 "16. To obtain a reasonable value for h, 

which is about le to 10-8 depending on the complexity of the minimization 

function, the eps should be set to at least 0.25 and at most 0.5 on a machine 

conforming to the IEEE 754 standard. 

LMcoef, LMstep and LMlimit 

The LMcoef, LMstep and LMlimit are used to control the behavior of the 

Levenberg-Marquardt algorithm (heading Nonlinear Linear Square Fitting in 

METHODS section). The Levenberg-Marquardt coefficient, LMcoef, should 

initially be a large value for a fitting, if the initial guesses for the variables are 

expected to be far from the optimal values. The larger the LMcoef, the smaller 

the adjustment for variables in each iteration. This strategy can prevent a poor 

initial guess from running wild. 

After each successful iteration (the sum of squares error, ssq, is 

decreased), the LMcoef is divided by the LMstep to decrease the LMcoef and 

hence speed up the fitting with larger adjustments, so that LMstep must be 

greater than 1. If the ssq increases after an iteration, LMcoef is multiplied by 

the LMstep. This retraction usually results in a change of the direction of the 

minimization path, and thus prevents the algorithm from been trapped at a 

local minimum. When the fitting is moving forward (ssq is decreased), LMstep 

acts as an accelerator; when the algorithm steps into a local minimum, it acts 

as a snooper searching for other directions for the fitting. If a local minimum is 

very deep, the algorithm may not escape the trap even after it has been 

multiplied to the LMstep many times. In this case, we need to set an upper 

bound for the LMcoef, and this upper bound is LMlimit. If LMcoef becomes 

larger than the LMlimit, then the algorithm will stop. After all, a local minimum 
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this deep may well be considered as a global minimum. 

In this study, LMcoef is set initially to 1024 or 256, LMstep to 2, and 

LMlimit to 1010. 

SSQlimit and SSQpercent 

SSQlimit and SSQpercent are used as major criteria for stopping the 

algorithm. SSQlimit should be set to a reasonably small value, because when 

ssq is decreased to less than SSQlimit, the fitting will stop. Unless the minimal 

ssq can be estimated or is specifically known before the fitting starts, do not 

use this criterion. Instead, set SSQlimit to zero and SSQpercent to a small 

fraction. When the kth iteration is successful and (ssqo - ssqk)/ssco is less 

than the SSQpercent, then the fitting will stop. 

Here we illustrate how to make use of the properties of SSQlimit and 

SSQpercent to obtain good fitting results. In this study, a fitting is always run 

at least twice. For the first run, SSQlimit is set to 0, and SSQpercent to 10-3 

for natural DNA, 10-4 for synthetic polymer and 10-5 for monomer. This setting 

will keep the fitting proceeding well past the iteration that gives the optimal 

solution. The results of each iteration are manually examined, and an optimal 

solution is chosen. Then for the second run, the SSQlimit is set to a value 

larger than the ssq of the chosen optimal iteration, but smaller than the ssq of 

the iteration previous to the optimal iteration, and SSQpercent is set to 0. This 

time, the fitting will stop right after the chosen iteration and results can now be 

printed for this optimal solution. 

SSOlaild 

The SSOiaild can be used to weigh ABS.ssq and LD.ssq differently 

during preliminary studies if desired. Results presented in this thesis are from 

fittings with SSQiaild set to 1. See heading Decomposition of Synthetic 

Polymer Absorption and LD spectra in the RESULTS and DISCUSSION 
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section for this reasoning. 

option 

Finally, the option. It is an integer taken as the sum of the following 

options: 

1 print simple information after each iteration 
2 print detailed information after each iteration 
4 print simple and/or detailed information to the OUTPUT file 
8 print the fitted spectra to the OUTPUT file 
16 print all fitted bands to the OUTPUT file 
32 proceed to repeated fittings after the first fitting is done 

In Example 0-AT2.1 , the simple one-line information is 

40 2.560000e+002 9.069433e+004 2.947606e+007
 

and the detailed information is 

IAnormal=1.000616, IAssq=1.272848e+007
 
LDnorma1=-1.931784, LDssq=1.665688e+007
 

275.70 ( 18.62) 29182 (265487) 11.25 (24.60) 1.205 (1.621) 1.0573
 
254.59 ( 9.08) 100065 (377289) 13.86 (10.72) 1.332 (0.654) 1.3734
 
208.44 ( 1.44) 126690 (123047) 10.50 ( 2.57) 1.205 (0.415) 1.8150
 
197.27 ( 1.77) 52040 ( 50102) 6.12 ( 2.54) 1.379 (0.642) 1.5405
 
185.69 ( 5.68) 151272 (219676) 7.57 ( 8.24) 1.292 (1.185) 0.9820
 
172.53 (142.03) 42533 (1800813) 4.49 (118.66) 1.002 (16.987) 1.8150
 

24.05 ( 15.34) -24.61 ( 35.97)
 

268.16 ( 45.42) 117889 (395540) 18.00 (37.73) 1.253 (1.128) 1.2995
 
206.43 ( 7.15) 129761 (158944) 19.69 (31.78) 1.499 (1.943) -0.3294
 
178.26 ( 3.18) 131475 (250814) 5.80 ( 4.02) 1.420 (0.616) 0.6034
 

40.37 ( 32.87) 21.66 ( 48.78)
 

The format for the output spectra is three columns of data for 

absorption-only fitting, and five columns for absorption and LD fitting. In both 

formats, the first column is the wavelength, the second column is the original 

input absorption spectrum, and the third column is the fitted absorption 

spectrum. If the LD spectrum is also fitted, then the fourth column is the 

original input LD spectrum, and the fifth column is the fitted LD spectrum. 

The format for the fitted bands written to the OUTPUT file also depends 
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on whether LD is involved. For absorption-only fitting (that is, there is only one 

base), all bands of the base are printed in columns (one band, one column), no 

wavelength column is inserted. If LD is present, then for each base, the 

absorption bands are printed first followed by one blank line and then the LD 

bands. 

Different combinations of the above options will be useful for different 

fitting conditions. Here is a typical sequence of fittings. For the first round of 

fitting, in which the initial guesses for the variables may be pretty far away from 

their optimal values, the option could be set to 7, which is 1 + 2 + 3. This will 

cause all available information after each iteration to be written to the OUTPUT 

file. These results can be examined after the fitting to determine which 

iteration gives the best results. Then start the second fitting with the option set 

to 25, which is 1 + 8 + 16 (and with the new SSQlimit and SSQpercent, see 

above). This time, only one line of information is printed to the screen after 

each iteration so that the progression of the fitting can be monitored. At the 

end of the fitting, the detailed information of the last iteration is written to the 

OUTPUT file, followed by the input and fitted spectra, and then the spectra for 

all bands. A spreadsheet computer program can then import these spectra 

from the OUTPUT file, and plot the original and fitted spectra and bands for 

visual inspection. If repeated fittings are desired (heading Uncertainties in 

Transition Dipole Directions in the METHODS section and heading 

Repeated Fittings with Randomized Transition Dipole Directions in the 

RESULTS and DISCUSSION section), then the results of the second round of 

fitting can be edited into a new PEAK file to shorten the computing time. Set 

SSQlimit to any value larger than the ssq of the last results, set SSQpercent to 

1, and set option to 32. 
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Repeated Fittings 

The program starts the repeated fittings by first asking for the filename 

of a file to store the fitting results, the number of fittings to repeat, and the 

range of an uniform distribution from which random numbers are drawn: 

input RANDOM filename, repeat & range:
 

The program first records the number of repeats, the range, and the 

number of bases as well as the number of bands of each base in the output 

file so that it can be accessed by other programs. There is no output 

generated after each iteration, only an integer count printed to the screen 

indicating at which repeat the program is currently executing. At the end of 

each fitting, the program writes the final values of all variables to the output file 

in one line. First the ABS.ssq and LD.ssq, then for each base, the band 

position, intensity, width and skewness for all bands, and then a and x angles. 

Note that no standard deviations are written to the file in this format, only the 

values of the variables. 

Command Line Arguments for the PARSE-R Program 

To run the program, type PARSE-R followed by your filename for 

RANDOM and OUTPUT files. The number of OUTPUT files must be equal to 

the number of bases in the RANDOM file. For example, under the DOS 

operating system on a PC, type PARSE -R 0 -GCGC2.R 0 -GCGC2.G 0 -GCGC2.0
 

and hit <Return>. Here O- GCGC2.R is the RANDOM file, the results of 

repeated fittings from the program ABS-LD. Since O- GCGC2.R contains data 

for two bases (guanine and cytosine), two OUTPUT files are required, and they 

are O- GCGC2.G and O- GCGC2.C. 

The program separates the data in O- GCGC2.R, and writes the data 
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belonging to a base to an OUTPUT file. The data in each OUTPUT file will be 

one line for each iteration; and in each line, the band position, intensity, width 

and skewness of each band, followed by the a and x angles. The ABS.ssq 

and LD.ssq are stored as the first two numbers in the first OUTPUT file. The 

<Comma> character is used to separate each field. 

The OUTPUT files can then be read into a spreadsheet program to 

calculate averages and standard deviations for each variable over all repeats. 
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List 1. ABS-LD Header Files 

#include <time.h>
 
#include <stdio.h>
 
#include <stdlib.h>
 
#include <math.h>
 
#include <float.h>
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List 2. ABS-LD LU Decomposition 

void initiatelu( int n );
 
void lu_inverse( int n );
 
int le decompose( int n );
 
void terminate lu( void );
 

double **LUalpha, *LUbeta, *LUscale;
 
int *LUindex, LUn=0;
 

void initiatelu( int n )
 
{
 

int i;
 

if( LUn > 0 )
 

terminate_lu();
 
LUn = n;
 
LUalpha = (double **)calloc( n, sizeof(double *) );
 
for( i=0; i<n; i++ )
 
LUalpha[i] - (double *)calloc( n, sizeof(double) );
 

LUbeta = (double *)calloc( n, sizeof(double) );
 
LUscale = (double *)calloc( n, sizeof(double) );
 
LUindex = (int *)calloc( n, sizeof(int) );
 

void luinverse( int n )
 
{
 

int i, j, k, ii;
 
double sum;
 

ii = -1;
 
for( i=0; i<n; i++ )
 
{
 

k = LUindex[i];
 
sum = LUbeta[k];
 
LUbeta[k] = LUbeta[i];
 
if( ii >= 0 )
 

for( j=ii; j<i; j++ )
 
sum -= LUalpha[i][j] * LUbeta[j];
 

else
 
if( sum != 0.0 )
 

ii = i;
 
LUbeta[i] = sum;
 

for( i=n-1; i>=0; )
 

{
 

sum = LUbeta[i];
 
for( j=i+1; j<n; j++ )
 
sum -= LUalpha[i][j] * LUbeta[j];
 

LUbeta[i] = sum / LUalpha(i][i];
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int lu_decompose( int n )
 

int i, j, k, ii;
 
double big, sum, temp;
 

for( i=0; i<n; i++ )
 

big - 0.0;
 
for( j=0; j<n; j++ )
 

temp = fabs( LUalpha[i][j] );
 
if( temp > big )
 
big = temp;
 

if( big == 0.0 )
 

return i;
 
LUscale[i] = 1.0 / big;
 

1 

for( j=0; j<n; j++ )
 

for( i=0; i<j; i++ )
 

sum = LUalpha[i][j];
 
for( k=0; k<i; k++ )
 

sum -= LUalpha[i][k] * LUalpha[k][j];
 
LUalpha[i][j] = sum;
 

1
 

big = 0.0;
 
for( i=j; i<n; i++ )
 
{
 

sum = LUalpha[i][j];
 
for( k=0; k<j; k++ )
 

sum -= LUalpha[i][k] * LUalpha[k][j];
 
LUalpha[i][j] = sum;
 
temp = LUscale[i] * fabs( sum );
 
if( temp >= big )
 
{
 

big - temp;
 
ii = i;
 

if( j != ii )
 

for( k=0; k<n; k++ )
 
{
 

temp = LUalpha[ii][k];
 
LUalpha[ii][k] = LUalpha[j][k];
 
LUalpha[j][k] = temp;
 

1
 

temp = LUscale[ii);
 
LUscale[ii] = LUscale[j];
 
LUscale[j] = temp;
 

1
 

LUindex[j] = ii;
 
if( LUalpha[j][j] == 0.0 )
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printf( "\n LU singularity at %d\n", j );
 
exit(0);
 

1
 

temp = 1.0 / LUalpha[j][j];
 
for( i=j+1; i<n; i++ )
 

LUalpha[i][j] *= temp;
 

return -1;
 

void terminate_lu( void )
 
{
 

int i;
 

if( LUn > 0 )
 

free( LUindex );
 
free( LUscale );
 
free( LUbeta );
 
for( i<LUn; i++ )
 

free( LUalpha[i] );
 
free( LUalpha );
 
LUn = 0;
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List 3. ABS-LD Levenberg-Marquardt Algorithm 

void initiate marquardt( int m, int n );
 
void marquardt_stdv( int n, int jn );
 
int marquardt( int m, int n, double x[], double parameters[], void
 
(*func)(), void ( *output) () );
 
void terminate marquardt( void );
 

double **MAjacobi, *MAbeta, *MAf, *MAff;
 
int *MAindex, MAn=0;
 

void initiate marquardt( int m, int n )
 

int i;
 

if( MAn > 0 )
 

terminate marquardt();
 
initiate_lu( n );
 
MAn = n;
 
MAjacobi - (double **)calloc( n, sizeof(double *) );
 
for( i=0; i<n; i++ )
 
MAjacobi[i] = (double *)calloc( m, sizeof(double) );
 

MAbeta = (double *)calloc( m, sizeof(double) );
 
MAf = (double *)calloc( m, sizeof(double) );
 
MAff = (double *)calloc( m, sizeof(double) );
 
MAindex = (int *)calloc( n, sizeof(int) );
 

void marquardt_stdv( int n, int jn )
 

int i, j;
 

for( i=0; i<jn; i++ )
 
for( j=0; j<jn; j++ )
 
LUalpha[i][j] = MAjacobi[i][j];
 

lu_decompose( jn );
 

for( j=0; j<jn; j++ )
 

for( i-0; i<jn; i++ )
 
LUbeta[i] = 0.0;
 

LUbeta[j] = 1.0;
 
lu_inverse( jn );
 
MAbeta[j] = LUbeta[j];
 

j = jn - 1;
 
for( i=n-1; i>=0; )
 

if( MAindex[i] == 1 )
 

MAbeta[i] = sqrt( MAbeta[j--] );
 
else
 
MAbeta[i] = 0.0;
 

1 
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int marquardt( int m, int n, double x[], double parameters[], void
 
(*func) (), void ( *output) () )
 

int i, j, k, jn, result;
 
double lmcoef, lmfactor, lmlimit, ssqlimit, ssqpercent;
 
double ssqf, ssqff, ssqdif, xj, hu, fZEROeps, oldssqdif;
 

if( m < n )
 
return -3;
 

lmcoef = parameters[0];
 
lmfactor = parameters[1];
 
lmlimit = parameters[2];
 
ssqlimit = parameters[3];
 
ssqpercent = parameters[4];
 
fZEROeps = pow( DBL EPSILON, parameters[6] );
 
result = 0;
 

func( x, MAf, n );
 
oldssqdif ssqf = 0.0;
 
for( i=0; i<m; i++ )
 

ssqf +- MAf[i] * MAf[i];
 
if( ssqf < ssqlimit )
 

result = 1;
 

while( result == 0 )
 

for( i=0; i<n; i++ )
 
MAindex[i] 0;
 

jn = 0;
 
for( j=0; j<n; j++ )
 

xj = x[j];
 
hu = fabs(xj) * fZEROeps;
 
if( hu < DBL EPSILON )
 

hu = fZEROeps;
 

x[j] += hu;
 
func( x, MAff, j );
 
for( k=0; k<m; k++ )
 

ssqdif = MAjacobi[jn][k] = (MAff[k] - MAf[k]) / hu;
 
if( fabs(ssqdif) > DBL_EPSILON )
 
MAindex[j] = 1;
 

x[j] xj;
 
if( MAindex[j] == 1 )
 

jn ++;
 

if( jn == 0 )
 

result = -2;
 
break;
 

for( j=0; j<jn; j++ )
 
{
 

hu = 0.0;
 
for( k=0; k<m; k++ )
 

hu += MAjacobi[j][k] * MAf[k];
 
LUbeta[j] = MAbeta[j] = hu;
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for( i=0; i<jn; i++ )
 

for( j=i; j<jn; j++ )
 

hu = 0.0;
 
for( k=0; k<m; k++ )
 
hu += MAjacobi[i][k] * MAjacobi[j][k];
 

LUalpha[i][j] = hu;
 

for( j=0; j<i; j++ )
 
LUalpha[i][j] = LUalpha[i][i];
 

for( i=0; i<jn; i++ )
 
for( j=0; j<jn; j++ )
 

MAjacobi[i][j] = LUalpha[i][j];
 

shortcut:
 

for( i=0; i<jn; i++ )
 
LUalpha[i][i] *= (1.0 + lmcoef);
 

lu_decompose( jn );
 
lu_inverse( jn );
 

j = jn - 1;
 
for( i=n-1; i>=0; )
 

if( MAindex[i] == 1 )
 

LUbeta[i] x[i] - LUbeta[j--];
 
else
 

LUbeta[i] = x[i];
 

func( LUbeta, MAff, n );
 
ssqff = 0.0;
 
for( i=0; i<m; i++ )
 

ssqff += MAff[i] * MAff[i];
 

ssqdif = ssqf - ssqff;
 
if( ssqdif > 0.0 )
 

{
 

for( i=0; i<n; i++ )
 
x[i] = LUbeta[i];
 

for( i=0; i<m; i++ )
 
MAf[i] = MAff[i];
 

marquardt_stdv( n, jn );
 
if( output != NULL )
 

output( jn, lmcoef, ssqdif, ssqf );
 
if( ssqff < ssqlimit )
 

result = 1;
 
else
 

if( (ssqdif/ssqf < ssqpercent) && (ssqdif < oldssqdif) )
 

result = 2;
 
else
 

lmcoef 1= lmfactor;
 
ssqf = ssqff;
 
oldssqdif = ssqdif;
 

else
 

if( output != NULL )
 
output( jn, lmcoef, ssqdif, ssqf );
 

lmcoef *= lmfactor;
 

1 
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if( lmcoef < lmlimit )
 

for( i=0; i<jn; i++ )
 

for( j=0; j<jn; j++ )
 
LUalpha[i][j] = MAjacobi[i][j];
 

LUbeta[i] = MAbeta[i];
 
1
 

goto short_cut;
 

else
 
result = -1;
 

parameters[0] = lmcoef;
 
parameters[5] = ssqf;
 

return result;
 
1 

void terminate marquardt( void )
 

int i;
 

if( MAn > 0 )
 

free( MAindex );
 
free( MAff );
 
free( MAf );
 
free( MAbeta );
 
for( i=0; i<MAn; i++ )
 

free( MAjacobi[i] );
 
free( MAjacobi );
 
MAn = 0;
 
terminate_lu();
 

1 
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List 4. ABS-LD Supporting Functions 

typedef struct { double mu, epsilon, sigma, rho, angle; 
int mu_, _epsilon_, _sigma_, 
double beta; 
double *pia, *pld; peak_t; 

typedef struct ( peak_t *peak; 
int peaks; 
double alpha, chi, gamma; 
int _alpha_, _chi_; 
double *bia, *bld; base t; 

struct ( base_t *base;
 
int points, bases, peaks;
 
double *wave, *ia, *ld;
 
double ianormal, ldnormal, orientation;
 
double *fit_ia, *fit_ld; ) spectrum;
 

void curve_shape( double mu, double ep, double si, double rho, double
 
x[], double y[], int points );
 
void input data( char *argv[] );
 
void evaluate iald( double x[], double f[], int nth );
 
void output data( FILE *file, int option );
 
void adjust_epsilon( void );
 

void curve_shape( double mu, double ep, double si, double rho, double
 
x[], double y[], int points )
 
{
 

static double half-1.177410023; /* sqrt( 2*ln(2) ) */
 
static double sqrt2pi=2.506628275; /* sqrt( 2*M PI ) */
 
double g, r, s, t, z;
 
int i;
 

r = 2.0 * si * rho / (rho * rho - 1.0);
 
z = log( rho ) / half;
 
t = ep / sqrt2pi / z;
 
for( i=0; i<points; i++ )
 
{
 

g = mu + r - x[i];
 
if( g > 0.0 )
 

s = log( g / r ) / z - z;
 
s = 0.5 * s * s;
 
y[i] (s < 700.0) ? t / g / exp(s) 0.0;
:
 

else
 
y[i] = 0.0;
 

double *fit_ia, *fit_ld, *bia, *bld, *pia, *pld;
 

1 
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1 

void input_data( char *argv[] )
 

{
 

char restriction[32];
 
FILE *file;
 
int i, j, left, right, points, peaks, bases;
 
base_t *bp;
 
peak_t *pp;
 

file - fopen( argv[1], "rt" );
 
if( file == NULL )
 

printf( "\n can't open PEAKS file: %s\n", argv[1] );
 
exit(0);
 

fscanf( file, "%d", &bases );
 
spectrum.bases = bases;
 
spectrum.peaks - 0;
 
spectrum.base = (baset *)calloc( bases, sizeof(base_t) );
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
fscanf( file, "%d", &peaks );
 
bp->peaks = peaks;
 
if( bases > 1 )
 

fscanf( file, "%lf %lf", &bp->alpha, &bp->chi );
 
bp->peak = (peak t *)calloc( peaks, sizeof(peak_t) );
 
for( j=0; j<peaks; j++ )
 
{
 

pp = &bp->peak[j];
 
fscanf( file, "%lf %lf %lf %lf %lf", &pp->mu, &pp->epsilon,
 

&pp->sigma, &pp->rho, &pp->angle );
 

spectrum.peaks += peaks;
 

fclose( file );
 

file = fopen( argv[2], "rt" );
 
if( file == NULL )
 

printf( "\n can't open SPECTRUM file: %s\n", argv[2] );
 
exit(0);
 

fscanf( file, "%d %d", &left, &right );
 
spectrum.points = points = right - left + 1;
 
spectrum.wave = (double *)calloc( points, sizeof(double) );
 
spectrum.ia = (double *)calloc( points, sizeof(double) );
 
spectrum.ld = (double *)calloc( points, sizeof(double) );
 
spectrum.fit_ia - (double *)calloc( points, sizeof(double) );
 
spectrum.fit_ld = (double *)calloc( points, sizeof(double) );
 

if( bases == 1 )
 

for( j=0; j<points; j++ )
 
fscanf( file, "%lf", spectrum.ia+j );
 

else
 
for( j=0; j<points; j++ )
 
fscanf( file, "%lf %lf", spectrum.ia+j, spectrum.ld+j );
 

fclose( file );
 

for( j=0; j<points; j++ )
 

http:spectrum.ld
http:spectrum.ia
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spectrum.wave[j] = left + j;
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
bp->bia = (double *)calloc( points, sizeof(double) );
 
bp->bld = (double *)calloc( points, sizeof(double) );
 
for( j=0; j<peaks; j++ )
 

pp = &bp->peak[j];
 
pp->pia = (double *)calloc( points, sizeof(double) );
 
pp->pld = (double *)calloc( points, sizeof(double) );
 

fit is - (double *)calloc( points, sizeof(double) );
 
fit ld = (double *)calloc( points, sizeof(double) );
 
bia = (double *)calloc( points, sizeof(double) );
 
bld - (double *)calloc( points, sizeof(double) );
 
pia = (double *)calloc( points, sizeof(double) );
 
pld = (double *)calloc( points, sizeof(double) );
 

printf( "\n restriction file: " );
 
gets( restriction );
 
if( restriction[0] )
 

if( (file = fopen( restriction, "rt" )) != NULL )
 

for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
if( bases > 1 )
 

fscanf( file, "%d %d", &bp->_alpha_, &bp->_chi_ );
 
for( j=0; j<peaks; j++ )
 

pp = &bp ->peak[j];
 
fscanf( file, "%d %d %d %d", &pp -> mu_, &pp ->_epsilon_,
 

&pp ->_sigma_, &pp ->_rho_ );
 

fclose( file );
 

else
 
{
 

printf( "\n can't open RESTRICTION file: %s\n", restriction );
 
exit(0);
 

else
 

for( i=0; i<bases; i++ )
 
{
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
if( bases > 1 )
 

bp-> alpha = bp-> chi - 1;
 
for( j=0; j<peaks; j++ )
 

pp = &bp->peak[j];
 
pp-> mu_ = pp- >_epsilon_ = pp->_sigma_ = pp->_rho_ = 1;
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printf( "\n No restriction file, all variables are fitted\n" );
 

int near;
 
double iabyld;
 

void evaluate_iald( double x[], double f[], int nth )
 

static double pideg=0.017453292; /* pi/180 */
 
int h, i, j, k, points, bases, peaks;
 
double y, z, sumxx, sumxy, gamma, beta;
 
base_t *bp;
 
peak_t *pp;
 
int fbase, fpeak;
 

bases - spectrum.bases;
 
points = spectrum.points;
 

h = 0;
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
for( j=0; j<peaks; j++ )
 

pp = &bp->peak[j];
 
if( pp-> mu_ )
 

pp->mu = fabs( x[h] );
 
h++;
 
if( pp->_epsilon_ )
 

pp->epsilon = fabs( x[h] ) * 1000.0;
 
h++;
 
if( 143-> _sigma._ )
 

pp->sigma = fabs( x[h] );
 
h++;
 
if( pp->_rho_ )
 
pp->rho = fabs( x[h) ) + 1.001;
 

h++;
 
if( nth < h )
 

fbase i;
 
fpeak = j;
 
nth = 32767;
 

1
 

if( bases > 1 )
 

if( bp->_alpha_ )
 
bp->alpha = x[h];
 

h++;
 
if( bp-_chi_ )
 
bp->chi = x[h];
 

h++;
 
if( nth < h )
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fbase = i;
 
fpeak = -1;
 
nth = 32767;
 

h = 0;
 
for( k=0; k<points; k++ )
 

fit_ia[k] = fit_ld[k] = 0.0;
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
if( nth == nvar II fbase == i )
 

{
 

for( k=0; k<points; k++ )
 
bia[k] = bld[k] = 0.0;
 

if( bases > 1 )
 

if( nth == nvar II fpeak == -1 )
 

y = sin( bp->alpha * pideg );
 
gamma = 3.0 * y * y;
 
if( nth == nvar )
 
bp->gamma = gamma;
 

else
 
gamma = bp->gamma;
 

for( j=0; j<peaks; j++ )
 

pp = &bp->peak[j];
 
if( nth == nvar II fpeak == j II fpeak == -1 )
 

if( nth == nvar II fpeak == j )
 

curve shape( pp->mu, pp->epsilon, pp->sigma, pp->rho,
 
spectrum.wave, pia, points );
 

if( nth == nvar )
 
for( k=0; k<points; k++ )
 

pp->pia[k] = pia[k];
 

else
 
for( k=0; k<points; k++ )
 
pia[k] = pp->pia[k];
 

if( bases > 1 )
 

if( nth == nvar II fpeak == -1 )
 

y = sin( (bp->chi - pp->angle) * pideg );
 
beta = gamma * y * y - 1.0;
 
if( nth == nvar )
 
pp->beta = beta;
 

else
 
beta = pp->beta;
 

for( k=0; k<points; k++ )
 
pld[k] = beta * pia[k];
 

if( nth == nvar )
 
for( k=0; k<points; k++ )
 
pp->pld[k] = pld[k];
 

1 
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else
 

for( k=0; k<points; k++ )
 
pia[k] = pp->pia[k);
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 
pld[k) = pp->pld[k];
 

for( k=0; k<points; k++ )
 
bia[k] += pia[k];
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 
bld[k] += pld[k];
 

if( nth == nvar )
 
{
 

for( k=0; k<points; k++ )
 
bp->bia[k] = bia[k];
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 
bp->bld[k] = bld[k);
 

else
 
{
 

for( k=0; k<points; k++ )
 
bia[k] = bp->bia[k);
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 
bld[k] = bp->bld[k];
 

for( k=0; k<points; k++ )
 
fit_ia[k] += bia[k];
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 
fit_ld[k] += bld[k];
 

}
 

for( k=0; k<points; k++ )
 

z = spectrum.fit_ia[k] = fit_ia[k];
 
f[h++] = spectrum.ia[k] - z;
 

1
 

if( bases > 1 )
 

{
 

sumxx = sumxy = 0.0;
 
for( k=0; k<points; k++ )
 

z = fit ld[k];
 
sumxy += z * spectrum.ld[k];
 
sumxx += z * z;
 

1
 

y = spectrum.ldnormal sumxy / sumxx;
 
for( k=0; k<points; k++ )
 

z spectrum.fit_ld[k] y * fit ld[k];
 
f[h++] = (spectrum.ld[k] - z) / labyld;
 

1 
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void output_data( FILE *file, int packed )
 

int i, j, k, pts, bases, points, peaks;
 
double iassq, ldssq, z, stdvm, stdve, stdvs, stdvr, stdva, stdvc;
 
base t *bp;
 
peakt *pp;
 

bases = spectrum.bases;
 
points = spectrum.points;
 
peaks = spectrum.peaks;
 

pts = 0;
 
iassq = ldssq - 0.0;
 
for( k=0; k<points; k++ )
 

z = MAf[pts + +];
 
iassq += z * z;
 

if( packed )
 
fprintf( file, "\n %le", iassq );
 

else
 

fprintf( file, "\n IAnormal=%lf,\t IAssq= %le \n ", spectrum.ianormal,
 
iassq );
 

iassq = sqrt( iassq / (points 4 * peaks) );
 

if( bases > 1 )
 

for( k=0; k<points; k++ )
 

z = MAf[pts + +];
 
ldssq += z * z;
 

ldssq *= (iabyld * iabyld);
 
if( packed )
 

fprintf( file, " %le", ldssq );
 
else
 

fprintf( file, " LDnormal=%lf,\t LDssq=%le\n", spectrum.ldnormal,
 
ldssq );
 

ldssq = sqrt( ldssq / (points - 2 * bases) );
 

pts = 0;
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
for( j=0; j<peaks; j++ )
 

pp - &bp- >peak[j];
 
if( packed )
 
fprintf( file, "\n %7.21f %7.01f %6.21f %6.31f %6.21f", pp->mu,
 

pp->epsilon, pp->sigma, pp->rho, pp->angle );
 
else
 
{
 

stdvm = MAbeta[pts++] * iassq;
 
stdve = MAbeta[pts++) * iassq * 1000.0;
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stdvs = MAbeta[pts++] * iassq;
 
stdvr = MAbeta[pts++] * iassq;
 
fprintf( file, "\n %7.21f (%6.21f) %7.01f (%6. Olf) %6.21f
 

(%5.21f) %6.31f (%5.31f)", pp->mu, stdvm, pp->epsilon, stdve,
 
pp->sigma, stdvs, pp->rho, stdvr );
 

if( bases > 1 )
 

fprintf( file, " %7.41f", pp->beta*spectrum. ldnormal );
 
1
 

if( bases > 1 )
 

if( packed )
 
fprintf( file, " %7.21f %7.21f", bp->alpha, bp->chi );
 

else
 
{
 

stdva = MAbeta[pts++] * ldssq;
 
stdvc = MAbeta[pts++] * ldssq;
 
fprintf( file, "\n %7.21f (%6.21f) %7.21f (%6.21f)\n",
 

bp->alpha, stdva, bp->chi, stdvc );
 

fprintf( file, "\n" );
 
} 

FILE *outputfile;
 
int option;
 

#define OP_SIMPLE Ox01
 
#define OP DETAIL 0x02
 
#define OPFILE 0x04
 
#define OP S- PECTRUM 0x08
 
define OP_PEAKS Ox10
 
#define OP RANDOMIZE 0x20
 
#define OP_- PACKED 0x80
 

void check marquardt( int jn, double lmcoef, double ssqdif, double ssqf
 

FILE *Of;
 

of = (option & OP FILE) ? outputfile : stdout;
 
if( ssqdif < 0.0 )
 

fprintf( of, " x " );
 
else
 

if( option & OP SIMPLE )
 
fprintf( of, "\n %d %le % le %le ", jn, lmcoef, ssqdif, ssqf
 

) ; 
if( option & OP_DETAIL )
 

output_data( of, !OP_PACKED );
 

void adjust_epsilon( void )
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int i, j, k, bases, peaks, points;
 
double x, sumxx, sumxy;
 
base_t *bp;
 
peak_t *pp;
 

bases = spectrum.bases;
 
points = spectrum.points;
 

for( k =0; k<points; k++ )
 
fit ia[k] - 0.0;
 

for( i =0;
=0; i<bases; i++ )
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
for( j=0; j<peaks; j++ )
 
{
 

pp = &bp- >peak(j];
 
curve shape( pp->mu, pp->epsilon, pp->sigma, pp->rho,
 

spectrum.wave, pia, points );
 
for( k=0; k<points; k++ )
 

fit_ia[k] += pia[k];
 

sumxx = sumxy = 0.0;
 
for( k =0; k<points; k++ )
 

x = fit_ia[k];
 
sumxx += x * x;
 
sumxy += x * spectrum.ia[k];
 

x = spectrum.ianormal = sumxy / sumxx;
 
for( i=0; i<bases; i++ )
 

by = &spectrum.base(i];
 
peaks = bp->peaks;
 
for( j-(); j<peaks; j++ )
 
bp->peak[j].epsilon *= x;
 

if( bases > 1 )
 

sumxx sumxy - 0.0;
 
for( k =0; k<points; k++ )
 

x = spectrum.ld[k];
 
sumxx += x * x;
 
sumxy += x * spectrum.ia[k];
 

x = spectrum.orientation = sumxy / sumxx;
 
for( k=0; k<points; k++ )
 

spectrum.ld[k] *- x;
 
}
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List 5. ABS-LD Main Function 

main( int argc, char *argv[] )
 

{
 

FILE *file;
 
int mfun, h, i, j, k, result, points, bases, peaks;
 
double *varfit, para[7];
 
base_t *bp;
 
peak_t *pp;
 
long begintime, endtime;
 
int repeat, ranrepeat;
 
double ranrange, ranscale, *varsave, *vangle;
 

if( argc < 4 )
 

{
 

printf( "\n need PEAK, SPECTRUM and OUTPUT files \n" );
 
exit(0);
 

input_data( argv );
 

printf( "\n eps, LMcoef, LMstep, LMlimit, SSQlimit, SSQpercent,
 
SSQia/ld, option:\n" );
 
scanf( "%lf %lf %lf %lf %lf %lf %lf %d", para+6, para+0, para+1,
 

para+2, para+3, para+4, &iabyld, &option );
 

points = spectrum.points;
 
bases = spectrum.bases;
 
peaks = spectrum.peaks;
 

mfun = points;
 
nvar = 4 * peaks;
 
if( bases > 1 )
 

{
 

mfun += points;
 
nvar += 2 * bases;
 

}
 

varfit = (double *)calloc( nvar, sizeof(double) );
 
vangle = (double *)calloc( peaks, sizeof(double) );
 

adjust_epsilon();
 

h k 0;
 

for( i.-(); i<bases; i++ )
 
{
 

by = &spectrum.base[i];
 
peaks - bp->peaks;
 
for( j=0; j<peaks; j++ )
 

pp = &bp->peak[j];
 
varfit[h++] = pp->mu;
 
varfit[h++] = pp->epsilon / 1000.0;
 
varfit[h++] = pp->sigma;
 
varfit[h++] = pp->rho - 1.001;
 
vangle[k++] = pp->angle;
 

}
 

if( bases > 1 )
 

{
 

varfit[h++] = bp->alpha;
 
varfit[h++] = bp->chi;
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outputfile = file = fopen( argv[3], "wt" );
 
initiate marquardt( mfun, nvar );
 

for( i=0; i<argc; i++ )
 
fprintf( file, " %s ", argv[i] );
 

fprintf( file, "\n\n" );
 
for( i=0; i<5; i++ )
 

fprintf( file, " %lg ", para[i] );
 
fprintf( file, " (%d) (%1g] M=%d N=%d <%1g>\n", option, iabyld,
 

mfun, nvar, para[6] );
 
fprintf( file, "\n orientation ABS/LD = %le\n", spectrum.orientation
 

);
 

iabyld = sqrt( iabyld );
 

time( &begintime );
 
result = marquardt( mfun, nvar, varfit, para, evaluate_iald,
 

check marquardt );
 
evaluate iald( varfit, MAf, nvar );
 
time( &endtime );
 

fprintf( file, "\n LMcoef=%le,\t SSQ-%le,\t Result=%d\n", para[0],
 
para[5], result );
 

output_data( file, !OP PACKED );
 

if( option & OP_SPECTRUM )
 

for( k=0; k<points; k++ )
 

fprintf( file, "\n %3.01f %le %le", spectrum.wave(k],
 
spectrum.ia[k], spectrum.fit_ia[k] );
 

if( bases > 1 )
 

fprintf( file, " %le %le ", spectrum.ld[k], spectrum.fit_ld[k]
 
);
 

fprintf( file, "\n" );
 

if( option & OP_PEAKS )
 
{
 

fprintf( file, "\n" );
 
for( i-0; i<bases; i++ )
 

by = &spectrum.basefil;
 
peaks = bp->peaks;
 
for( k=0; k<points; k++ )
 
{
 

for( j=0; j<peaks; j++ )
 
fprintf( file, " %le ", bp- >peak[j].pia[k] );
 

fprintf( file, "\n" );
 

if( bases > 1 )
 

fprintf( file, "\n" );
 
for( k=0; k<points; k++ )
 

for( j=0; j<peaks; j++ )
 
fprintf( file, " %le ", spectrum.ldnormal *
 

bp->peak(j).pld(k] );
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fprintf( file, "\n" );
 

fprintf( file, "\n" );
 

fclose ( file );
 

if( option & OP_RANDOMIZE )
 
{
 

para[3] = para[5];
 
para[4] = 0.0;
 

printf( "\n\n input RANDOM filename, repeat & %crange: ", 241 );
 
scanf( "%s %d %lf", argv[0], &ranrepeat, &ranrange );
 

ranscale = 2.0 * ranrange / ((double)RAND_MAX + 1.0);
 
srand( (unsigned) time( &begintime ) );
 

file = fopen( argv[0], "wt" );
 
fprintf( file, "%d %lf %d", ranrepeat, ranrange, bases );
 
for( i=0; i<bases; i++ )
 
fprintf( file, " %d", spectrum.base[i].peaks );
 

fclose( file );
 
varsave = (double *)calloc( nvar, sizeof(double) );
 
for( i=0; i<nvar; i++ )
 
varsave[i] = varfit[i];
 

printf( "\n" );
 

time( &begintime );
 
for( repeat=0; repeat<ranrepeat; repeat++ )
 
{
 

printf( "%4d", repeat );
 
h = 0;
 
for( i=0; i<bases; i++ )
 
{
 

by = &spectrum.base[i];
 
peaks = bp->peaks;
 
for( j=0; j<peaks; j++ )
 
bp->peak[j].angle = vangle[h++] + ranscale * rand()
 

ranrange;
 
1
 

para[0] = 1024.0;
 
para [1] = 2.0;
 
para[2] = 1.0e10;
 
marquardt( mfun, nvar, varfit, para, evaluate_iald, NULL );
 
evaluate_iald( varfit, MAf, nvar );
 
file - fopen( argv[0], "at" );
 
output data( file, OP_PACKED );
 
fclose( file );
 
for( i=0; i<nvar; i++ )
 

varfit[i] = varsave[i];
 
}
 

time( &endtime );
 
printf( "\n use time %ld sec\n", endtime-begintime );
 

terminate marquardt();
 
return 0;
 

1 
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List 6. PARSE-R Main Function 

#include <stdio.h>
 
#include <stdlib.h>
 

main( int argc, char *argv[] )
 

{
 

FILE *fin, *fout[4];
 
int repeat, bases, peaks[4], i, j, k;
 
double iassq, ldssq, mu, epsilon, sigma, rho, temp, alpha, chi;
 

if( argc < 3 )
 

(
 

printf( "\n need RANDOM and OUTPUT files\n" );
 
exit(0);
 

}
 

fin = fopen( argv[1], "rt" );
 
fscanf( fin, "%d %lf %d", &repeat, &temp, &bases );
 

if( argc != bases+2 )
 
printf( "\n need %d OUT files\n", bases );
 

else
 
( 

for( i=0; i<bases; i++ )
 
(
 

fscanf( fin, "%d", peaks+i );
 
fout[i] = fopen( argv[i+2], "wt" );
 

}
 

for( i=0; i<repeat; i++ )
 
{
 

fscanf( fin, "%lf %lf ", &iassq, &ldssq );
 
fprintf( fout[0], " %lg, %lg, ", iassq, ldssq );
 
for( j=0; j<bases; j++ )
 
(
 

for( k=0; k<peaks[j]; k++ )
 
{ 

fscanf( fin, "%lf %lf %lf %lf %lf", &mu, &epsilon, &sigma,
 
&rho, &temp );
 

fprintf( fout[j], " %lg, %lg, %lg, %lg, ", mu, epsilon, sigma, rho
 
);
 

1
 

fscanf( fin, "%lf %lf ", &alpha, &chi );
 
fprintf( fout[j], " %lg, %lg \n ", alpha, chi );
 

}
 

}
 

for( i=0; i<bases; i++ )
 
fclose( fout[i] );
 

fclose ( fin );
 
} 

1 




